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ABSTRACT: The spontaneous emission of internal waves (IWs) from balanced mesoscale eddies has been previously
proposed to provide a source of oceanic IW kinetic energy (KE). This study examines the mechanisms leading to the
spontaneous emission of the spiral-shaped IWs from an anticyclonic eddy with an order-one Rossby number, using a
high-resolution numerical simulation of a flat-bottomed, wind-forced, reentrant channel flow configured to resemble the
Antarctic Circumpolar Current. It is demonstrated that the IWs are spontaneously generated as a result of a loss of bal-
ance process that is concentrated at the eddy edge and then radiates radially outward. A 2D linear stability analysis of
the eddy shows that the spontaneous emission arises from a radiative instability which involves an interaction between a
vortex Rossby wave supported by the radial gradient of potential vorticity and an outgoing IW. This particular instabil-
ity occurs when the perturbation frequency is superinertial. This finding is supported by a KE analysis of the unstable
modes and the numerical solution, where it is shown that the horizontal shear production provides the source of the per-
turbation KE. Furthermore, the horizontal length scale and frequency of the most unstable mode from the stability anal-
ysis agree well with those of the spontaneously emitted IWs in the numerical solution.

SIGNIFICANCE STATEMENT: Spontaneous emission of internal waves (IWs) describes a process by which large-
scale, slow oceanic currents can spontaneously emit IWs. Recent observations and numerical studies suggest that sponta-
neous IW emission can provide an important IW energy source. Identifying the mechanisms responsible for spontaneous
IW emission is therefore of utmost importance because IW breaking has crucial effects on the oceanic large-scale circula-
tion. This study examines the spontaneous emission of IWs from a numerically simulated anticyclonic eddy. We show that
the emission process results from radiative instability when the perturbation frequency is larger than the Coriolis fre-
quency. This instability mechanism can be significant across the oceans for flow structures with order-one Rossby numbers
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(a measure of flow nonlinearity).
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1. Introduction

Internal waves (IWs) are ubiquitous in the ocean, and their
breaking drives turbulent mixing that shapes large-scale circu-
lation patterns and the distribution of heat and carbon in the
climate system (Munk and Wunsch 1998; Whalen et al. 2020).
They represent a large energy reservoir, with about 1 terawatt
(TW) converted from barotropic tides (Egbert and Ray 2000;
Nycander 2005), and another 0.3-1.4 TW converted into near-
inertial IWs, mainly from high-frequency wind forcing (Alford
2003; Rimac et al. 2013).

Another possible mechanism for IW generation that has
been proposed is termed spontaneous emission—a process
that describes the spontaneous generation of IWs from so-
called balanced motions (see Vanneste 2013 and references
therein). These balanced motions satisfy the invertibility prin-
ciple of potential vorticity (PV)—at a given instant, all dynami-
cal fields (e.g., velocity, density) can be deduced by inverting
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the PV without the need to time evolve each of the fields sep-
arately (Hoskins et al. 1985). A classic example is the quasigeo-
strophic (QG) model (Pedlosky 2013), which is quite successful
in describing the dynamics of oceanic mesoscale eddies, typi-
cally characterized by small Rossby numbers (Ro << 1) and
large Richardson numbers (Ri >> 1).

Ford (1994a) and Ford et al. (2000) demonstrated the anal-
ogy between spontaneous emission of IWs from a balanced
flow and Lighthill radiation of acoustic waves from a turbu-
lent flow (Lighthill 1954). Vanneste and Yavneh (2004) and
Vanneste (2008) showed that in the low-Ro regime, spontane-
ous emission is expected to be exponentially small. Conversely,
Williams et al. (2008) found in laboratory experiments that the
amplitude of the spontaneously emitted IWs depends linearly
on Ro. In both paradigms, these previous findings suggest that
spontaneous emission could be significant in high-Ro flows.

Indeed, Shakespeare and Taylor (2014) showed analytically
that the spontaneous emission from strained fronts could be
significant for large strain values, representing an O(1) Rossby
number regime. Later, Nagai et al. (2015) performed an ideal-
ized simulation of a Kuroshio Front and demonstrated significant
spontaneous emission of IW energy from the front. The emit-
ted IWs were eventually reabsorbed into the mean flow at
depth, thereby redistributing the balanced flow energy rather
than providing a significant sink. Using high-resolution numerical
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simulations of an idealized channel flow, Shakespeare and Hogg
(2017) also reported spontaneous emission of IWs from surface
fronts, which were further amplified at depth through energy ex-
changes with the mean flow.

Direct observational evidence of spontaneous emission in
the ocean is scarce, likely due to the difficulty in eliminating
other IW generation mechanisms using sparse measurements.
Alford et al. (2013) measured the rate of generation of IWs
from a subtropical frontal jet in the northern Pacific Ocean to be
0.6-2.4 mW m 2, which leads to a source of about 0.2-0.9-TW
IW energy, when extrapolated to the global ocean. This rough
evaluation is comparable to the estimate of wind-forced near-
inertial IWs, thereby suggesting that spontaneous emission could
be significant to the ocean’s kinetic energy (KE) budget. Using
synthetic aperture radar and in situ measurements, Johannessen
et al. (2019) showed evidence of spontaneous emission of TWs
from a mesoscale, baroclinic anticyclonic eddy in the Greenland
Sea (at the latitude of ~78°N) with a horizontal scale of 1 km.
Furthermore, Chunchuzov et al. (2021) used high-resolution in-
frared imaging to observe the emission of spiral-shaped IWs,
with a horizontal scale of 0.4-1 km, originating from the edge
of a high Rossby number submesoscale cyclonic eddy near
Catalina Island.

In this article, we investigate the spontaneous emission of
spiral-shaped IWs from an anticyclonic eddy of O(1) Rossby
number, using a high-resolution numerical simulation of a sta-
tistically equilibrated channel flow. We show that the sponta-
neous emission is directly linked to a loss of balance (LOB)
process that results from a radiative instability of the eddy.
This radiative instability mechanism closely follows the one
described in Schecter and Montgomery (2004, hereinafter
SMO04), in the context of atmospheric cyclones. SM04 demon-
strated that an idealized barotropic Rankine vortex can be-
come unstable and emit IWs due to the interaction between a
vortex Rossby wave, which is supported by the radial gradient
of the mean flow PV, and an outward-propagating IW. In this
article, we present the first demonstration of this instability
mechanism in a forced dissipative numerical solution.

The article is organized as follows. In section 2, we describe
the numerical setup used to study the spontaneous emission
of IWs from the eddy. The quantification of LOB of the mean
flow and the generation and propagation of the radiated IWs
are discussed in section 3. In section 4, we examine possible
mechanisms leading to LOB and spontaneous emission. The
setup and methodology used to carry out a 2D linear stability
analysis of the eddy circulation are described in section 5. In
section 6, we present the results of the stability analysis and
compare them with the numerical solution. The instability
mechanism is discussed in section 7, and in section 8, we sum-
marize our findings and their implications for realistic ocean
scenarios.

2. Numerical setup

The numerical simulations are performed using flow_solve
(Winters and de la Fuente 2012), a pseudospectral, nonhydro-
static, Boussinesq solver. The setup consists of a reentrant
channel flow on an f plane over which wind blows to mimic an
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idealized configuration of the Antarctic Circumpolar Current
(ACC), with an initial stratification profile based on observa-
tions from the Southern Ocean (Garabato et al. 2004). With-
out loss of generality, the Coriolis frequency f > 0 and the
value is fixed to f = 1.2 X 107* s™'. The domain sizes in the
zonal, meridional, and vertical (%, y,%) are L, = 200 km,

y = 200 km, and H = 2 km, respectively. The boundary con-
ditions are periodic in the zonal direction, free-slip wall in the
meridional direction, and free-slip rigid lid in the vertical
direction.

The numerical analysis shown in this manuscript is based
on one of the simulations previously discussed in Barkan et al.
(2017). The simulation is forced by a steady wind stress 7, of
the form:

7.(0) =7, Sinz(%y

y

)fc, (1)

where py 7o = 0.1 N m™2 and the reference density p, =

10% kg m . The wind stress is applied as a body force confined
to the upper ~80 m, representing an effective mixed layer depth.
This wind forcing drives a zonal jet (i.e., an idealized “ACC”)
and induces Ekman upwelling and downwelling that tilt the ini-
tially flat isopycnals, leading to baroclinic instability and the sub-
sequent formation of mesoscale baroclinic eddies.

This system initially spins up in a coarser resolution simula-
tion until a statistical steady state is reached. Following this, a
higher-resolution simulation is initiated and run for 4 months
[for further detail, the reader is referred to Barkan et al.
(2017)]. The hourly output of the last month is used for the
analysis in this study. A representative snapshot of the vertical
component of vorticity at the surface shows a large anticy-
clonic eddy, two cyclonic eddies, and smaller-scale fronts and
filaments with O(1) Rossby numbers (Fig. 1a). The signature
of IWs can be easily visualized in the vertical velocity field,
which is typically much larger than that associated with the
eddy circulations. The corresponding vertical velocity in the
vicinity of the anticyclonic eddy at 500-m depth shows spiral-
shaped structures that originate near the edge of the eddy
(Fig. 1c). The associated power spectral density of the vertical
velocity suggests that the spiraling structures may be the sig-
nature of spontaneously emitted IWs with an ~1.3f frequency
(Fig. 1b). In what follows, we investigate the mechanisms lead-
ing to the spontaneous IW emission from this anticyclonic eddy.

Because the anticyclonic eddy is being translated by the
idealized ACC in the x direction with a nearly constant speed
of Uer = 026 ms™ L, we carry out the analysis that follows in
the ACC reference frame:

X=x-U,

ref

LYY=y, Z=z 2)

where (x, y, z) are the Cartesian coordinates of the numerical
simulation.

Furthermore, to separate the spontaneously emitted IWs
from the slowly evolving mean flow, we decompose any field
¢, namely,

b=+ ¢, 3)
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FIG. 1. (a) A representative surface snapshot of the vertical component of vorticity { (normalized by f). The red
box region of size (120 km X 120 km) is used to analyze IW generation and propagation from the anticyclonic eddy.
(b) Vertical velocity w frequency spectra in a frame moving with the ACC [Eq. (2)]. The spectrum is computed in the
red box region shown in (a), excluding the anticyclonic eddy region. The spectrum peaks approximately at 1.3f. (c) A
representative snapshot of the vertical velocity w at z = 1.5 km at the same time instance of the (a). The spiral-shaped
IWs radiated from the edge of the eddy are visible. Reflection of the radiated IWs from the free-slip wall at y = 0 km
is also visible. The dashed cyan lines in (a), (c), and (d) mark the radius R = 20 km of the eddy. Typically, the horizon-
tal length scale of the emitted IWs is ~4 km. (d) Solution of vertical velocity w obtained from 2D linear stability anal-
ysis of the eddy for the case of azimuthal wavenumber m = 9 (see section 5 for more details).

where the overline denotes a low-pass sixth-order Butter-
worth temporal filter with a frequency cutoff of 0.8f and the
prime denotes the remaining IW field. The filtering is applied
in the moving reference frame (X, Y, Z) to reduce the Doppler
shifting effects (e.g., Rama et al. 2022).

Throughout the article, we used the notation () to represent an
average quantity, and the subscript of the notation denotes the
average along that direction unless otherwise stated, for example,

H
@), =5 | oz @

which denotes the vertical average of ¢.

3. Evidence of loss of balance and spontaneous emission

To determine whether the IW signatures shown in Fig. 1c
are indeed associated with an LOB in the anticyclonic eddy,

we diagnose the departure from the gradient wind balance
(McWilliams 1985):

=V,-(u,-V,u,) + fC = Vip, )
where V;, = (3, dy) is the horizontal gradient operator, u, =
(u, v) is the horizontal velocity vector, and p is the pressure.
The associated LOB measure for a given flow field (u,, p) can
be defined (Capet et al. 2008) as follows:

|Vh'(“h'vh“h) - f{+ VﬁPl
|Vh'(uh-thh)| + fld + |Vf,P| + IJv’

e(u,, p) = (6)

where the term w = + (Vf,p)r s 18 added to the denomi-
nator of Eq. (6) to eliminate the possibility of identifying
weak flow regions as significantly unbalanced. The value of €
varies from 0 to 1, with € = 0 (e = 1) denoting fully balanced
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FIG. 2. (a) A representative surface snapshot of the LOB parameter € [Eq. (6)], computed at the same time as is

shown in Figs. 1a and 1b e computed from the daily
((@,) 24> (P),4)- The daily time average is used to smooth

time average of the low-pass velocity and pressure field
out any small-scale motions within the eddy that cannot be

removed by the Eulerian temporal filter. The dashed blue line marks the edge of the anticyclonic eddy.

(unbalanced) motions. A representative snapshot of € at the
surface shows a significant imbalance around the edge of the
anticyclonic eddy (Fig. 2a). Since the anticyclonic eddy is con-
stantly being deformed by straining motions (note the cy-
clonic circulation pattern around its edge; Fig. 1a), it does not
retain a perfectly circular shape, resulting in an asymmetric e.
More importantly, the motions leading to loss of balance are
found to be quite rapid because the daily averaged low-pass
velocity field is largely balanced (Fig. 2b). Hereinafter, we re-
fer to this balanced flow as the mean flow or basic state. To de-
note it, we used the subscript “m,” which describes the daily
average of the low-pass field.

To establish the connection between the rapid motions lead-
ing to LOB at the edge of the anticyclonic eddy and the spon-
taneous emission of IWs, we first compute the IW energy flux:

F

u'’p’, 9
where w = (u, up, w’) and p’ denote the IW velocity and
pressure fields, respectively. These IW fluxes are computed in
a cylindrical coordinate system (r, 6, z) centered around the
anticyclonic eddy, with
r=vVX2 + Y2, 6=tan }(Y/r). 8)
The temporal filter [Eq. (3)] is applied after removing the
depth-averaged fields at each time instant.
The associated outward-propagating IW energy can be esti-
mated using the azimuthally and vertically averaged radial en-
ergy flux, namely (Voelker et al. 2019),

1 H 2
Dy (r, 1) = EL Jo F rdodz, 9)

where F, = wp’. Indeed, positive values of @y demonstrate
that substantial IW energy radiates outward from the edge of
the eddy (Fig. 3a), as is also visible in the depth-averaged en-
ergy flux vector (Fig. 3b). The sign change in ®py, which oc-
curs at the edge of the eddy, suggests that the spontaneously
emitted IWs are generated near the edge of the eddy. Indeed,
the azimuthal, vertical, and temporal average of the IW flux

divergence,
2m oH (T 4
I I ‘[ —(rF,)dtdzde,
o Jo Joor

is small inside the eddy (the blue shaded region in Fig. 3c),
peaks just outside it, and then decays to zero around r = 30 km.
Further away from the eddy, the value of (V-F), ., remains
nearly zero, implying that d/0r(rF,)s ., ~ 0. This suggests that
the average radial energy flux (F,),., is proportional to r !,

consistent with Fig. 3d.

11
2@ HT

(V-F)y., = (10)

4. Spontaneous emission mechanisms

Next, we examine the possible processes that can lead to
LOB and spontaneous emission, namely, frontogenesis at the
edge of the eddy and eddy instabilities. Geostrophic adjust-
ment (Rossby 1938) is another obvious candidate for IW emis-
sion in initial value problems. However, because our solutions
are statistically steady (Barkan et al. 2017), we do not specifi-
cally distinguish between geostrophic adjustment and fronto-
genesis (e.g., Blumen 2000).

a. Frontogenesis

To investigate the potential role of frontogenesis in the gen-
eration of IWs, as detailed in Shakespeare and Taylor (2014),
we compute the correlation function between the wave kinetic
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FIG. 3. (a) Radial and time-series plot of the IW energy propagation @y [Eq. (9)]. (b) Time and vertically averaged
IW energy flux vector F given by Eq. (7). The dotted blue lines in (a) and (b) indicate the edge of the anticyclonic
eddy at r = 20 km. Azimuthal, vertical, and time average of (c) divergence of the energy flux F given by Eq. (10) and
(d) radial energy flux F,. The thick red line shows the curve r~!. The blue-shaded regions in (c) and (d) show the eddy

region. The time average for (b)—(d) is performed over 35 inertial periods.

energy K and the frontogenetic tendency rate 7 of the mean
flow buoyancy gradient:

(T,K)y

C= :
(T3)y(K2)y,

(11

where ()y is the volume integral carried out around the edge

of the eddy, i.e., 15 = r = 25 km, and over the upper 200 m

of the domain where the strain is substantial (not shown). In

Eq. (11), the frontogenetic tendency rate T}, is defined (Barkan

et al. 2019) as follows:

b = (12)
v,bl

T,

with F, denoting the frontogenetic tendency for [V h52| (Hoskins

1982):
au (a5)2 v (65)2 (aﬁ
F,=—|=l=+ <l + 5+
ax\ox/ “av\y) o

such that positive (negative) values of 7, denote frontogenetic
(frontolytic) flow regions. The wave kinetic energy is defined as

7\ b db

u
a—y) ALY REY

|
K= E(u’u’ + V). (14)
Since K is positive definite by construction, C is expected to
be positive and close to 1 if the frontogenetic regions strongly
correlate with regions of high K.

Interestingly, we find correlation C to be slightly positive
but very weak (Fig. 4c), suggesting that frontogenesis is un-
likely to be the key mechanism responsible for the observed
IW emission. Indeed, a representative snapshot of T}, (Fig. 4a)
shows rather weak frontogenetic rates without a clear sign at
the periphery of the eddy and with little spatial resemblance to
the IW kinetic energy patterns (Fig. 4b).

b. Eddy instability

We examine whether the observed LOB in the numerical
simulation is related to an instability of the anticyclonic eddy
by examining the necessary criteria for different instabilities.

Symmetric instability (SI) can trigger LOB and, therefore,
can lead to spontaneous IW emission (Chouksey et al. 2022).
The necessary condition for symmetric instability requires
fO,, < 0 (Hoskins 1974), where fis the Coriolis frequency, and

Qm =(f+ §m)8zbm - szméxbm + 8Zumaybm, (15)
which is Ertel’s PV of the mean flow under the hydrostatic ap-
plroximation1 and Jy, dy, and 9, denote the derivatives in the
X, Y, and Z directions, respectively. Since Q,, > 0 in our

!'We solve for the nonhydrostatic equations of motion, but be-
cause of the grid spacing we use (section 2), our solutions are ef-
fectively hydrostatic.
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FIG. 4. A representative surface snapshot of (a) frontogenetic tendency rate 7}, (normalized by f) and (b) wave KE
K (normalized by the surface average K (K).,). (c) Time series of the correlation function C [Eq. (11)] averaged over
the upper 200 m of the domain. The dotted blue lines in (a) and (b) mark the edge of the eddy.

solutions (f > 0 in our configuration), the anticyclonic eddy is
stable to SI (Fig. 5a).

McWilliams et al. (1998, 2004) derived limiting conditions
for the integrability of a set of balanced equations in the iso-
pycnal coordinates. They demonstrated that A,, — S,, < 0
(for f> 0) is a sufficient condition for LOB, where

Am=f+avam—6 u

v

(16a)

and

S, = \/(axyum —dy, v, ) + Oy v, Oy, w,), (16b)
which denote the absolute vorticity and the magnitude of the
horizontal strain rate of the balanced flow, respectively, and
the spatial derivatives are computed in the isopycnal coordi-
nate system (X = X, Y, =Y, Z; = b,,), namely,

d d

ob,, 0
S S 1
0X, X a,b oZ (172)

a ad

ayb,, 9
= - = 1
aY, aY a,b,0Z (176)

Ménesguen et al. (2012) and Wang et al. (2014) further
showed that this LOB condition is closely related to the on-
set of ageostrophic anticyclonic instability (AAT), which is
triggered in the neighborhood of, rather than precisely at,
A, — S, < 0. The simulated anticyclonic eddy in our solu-
tions satisfies this condition for LOB and may indeed be un-
stable to AAI (Fig. 5b).

The necessary condition for an inflection point instability is
given by the Rayleigh-Kuo-Fjgrtoft condition, which requires
a sign change in the PV gradient within the domain (some-
times referred to as barotropic or lateral shear instability). In
the case of a baroclinic flow (as is the case here), the necessary
condition is the sign change in the along-isopycnal gradient of
PV within the domain (Eliassen 1983), which is defined as

(18)
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line in (a) and (b) marks the edge of the anticyclonic eddy. All quantities are averaged over 24 h.

Interestingly, the azimuthal- and time-averaged 9,(Q.)e
does not change sign within the anticyclonic eddy (Fig. 5¢),
whereas the azimuthal- and time-averaged 9,(Q,,)s does
(Fig. 5d). This implies that the anticyclonic eddy is stable to
inflection point instability but may be unstable to barotropic
(lateral shear) instability. Barotropic instability can occur
within a balance model (e.g., the QG model) and, therefore,
does not necessarily lead to LOB. However, if the Rossby
number of the eddy is sufficiently large, the barotropic in-
stability can become radiative. Such a radiative instability
has been termed Rossby inertia buoyancy (RIB) instabil-
ity (SM04; Hodyss and Nolan 2008; see section 7 for more
detail).

Kelvin—-Helmholtz instability (Miles 1963), which can be
triggered when the Richardson number Ri = a.b,,/[(@,1,,)* +
(azu,,,)z] < 1/4, can also lead to LOB. However, in our case,
Ri > 1/4is everywhere in the domain (not shown). We can
further rule out centrifugal instability, which is expected
to eventually lead to the breakdown of the anticyclonic
eddy over rather rapid time scales (Carnevale et al. 2011).
Such breakdown is not observed in the numerical simula-
tion (see supplemental Movie 1 in the online supplemental
material).

5. Linear stability analysis: Configuration and
numerical methods

In the previous section, we demonstrated that the anticy-
clonic eddy is susceptible to AAI and barotropic shear instabil-
ity. In this section, we conduct a linear stability analysis of the
anticyclonic eddy to determine whether the observed spontane-
ous IW emission results from an instability.

Our basic state is defined with respect to the azimuthally aver-
aged and 24-h low-pass fields (Figs. 6a,c,e), which approximately
satisfy gradient wind balance (Fig. 2b). This basic state, which we
refer to as case 1, satisfies the necessary condition for both AAI
and lateral shear instability. In what follows, we contrast the sta-
bility analysis of the basic state in case 1 with that of a modified
basic state (case 2; Figs. 6b,d,f), where we spatially low
pass the normal strain components dxu,, and dyv,, such
that (A,, - S,,) > 0 everywhere (Fig. 6f). The low-pass filter is a
sixth-order Butterworth spatial filter with a filter width of 1.5 km.
This comparison helps us identify the dominant instability mech-
anism responsible for the spontaneous emission of IWs.

a. Governing equations

The equations of motion for the perturbation fields u,, u,
w, p, and b satisty the linearized Navier-Stokes equations on
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FIG. 6. The basic states used for the linear stability analysis. (a),(b) Azimuthally averaged surface azimuthal mean
velocity U, (normalized by the maximal magnitude of the eddy azimuthal velocity Up) and (c),(d) contour plots of
U,, (normalized by Uy). (e),(f) The necessary condition for AAI where the solid black line in (e) denotes the (A; —
S,.) = 0 contour. (e) Case 1 corresponds to a basic state where the necessary condition for AAI is satisfied, whereas
(f) case 2 corresponds to a basic state where the necessary condition for AAI is not satisfied. The red line in (a) shows
the surface horizontal shear 9,U,,, (normalized by f). The red dotted lines in (c) show the shear layer thickness & (nor-
malized by the radius of the eddy R) computed based on radial distance corresponding to 80% of the maximum mag-

nitude of 9,U,,,.

an f plane, under the Boussinesq approximation. We use a cy-
lindrical coordinate system centered around the anticyclonic
eddy [Eq. (8)] and define the following length and time scales:

r = RF, (19a)

z = HZ, (19b)
1.

t=-1, 19¢
7 (19c)

where R = 20 km is the eddy radius, H = 2 km is the domain
depth, and f = 1.2 X 10~* s~ ! is the Coriolis frequency used
in our simulations.

The velocity, pressure, and buoyancy are scaled with

(w,, uy) = Uy,, it,), (20a)
w = U, H/RW, (20b)
p = fU,Rp, (20c)
b = fU,RIHb, (20d)

where U, is a characteristic velocity scale, taken to be
1.05 m s~ '—the maximal magnitude of the eddy azimuthal
velocity. Using Egs. (19a)—(19¢) and (20a)—(20d), the equations
of motion are

D~ — (1 +2Ro)i, = ZI; + Ek(vzﬁr - 71_2'1' B rZ_Z%;)
(21a)
DD o 4 (1 + Rod)i, + Ror% = %%
+ Ek(V i, :—25;9 + ,2—2%) (21b)
ll))b aB g _ Ejﬁ; (21d)
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where U, Q = U /7, and { = 1/7/o7(7*€1) are the nondimen-
sional azimuthal velocity, angular velocity, and vertical com-
ponent of vorticity of the basic state, respectively. The Rossby
number Ro = Uy/(fR), and a = HJR is the aspect ratio of the
eddy. The Ekman number Ek = v/(fR?) is set to be 10™° (cor-
responding to a viscosity v = 5 X 107* m? s7!, as is used in
the numerical simulation), and the Prandtl number Pr = v/k is
taken to be 1, where « is the diffusivity. The nondimensional
material derivative is

D a ~ d
=+ —
Di i Ro) a6’ 22)
and the Laplacian operator is
2 1o 18 1
Vies S+t +—5—. 23
a2 FOF | Pof  a?9z @3)

We consider a normal-mode form of the perturbations:

[i,. ity . 5. BIF, 0. 2, 1) = R([a,, iy, 0 p. DI, 2)e ),

24

where @ denotes the real part and the hat quantities denote
the complex eigenfunctions, which depend on 7 and Z. The
variable m is the azimuthal wavenumber and & = @, + i@,
with @, denoting the growth rate and &, denoting the fre-
quency of the perturbation. In what follows, we consider only
the positive m values since @(m) = @*(—m), where the super-
script “star” denotes the complex conjugate. The domain is
7|0, Rmax] and 7 € [0, 1], where Rmax =9 is the maximum
radial domain size (see section 5b and appendix B for more
details).

The boundary conditions for the velocity and pressure at
7 =0 depend on the azimuthal wavenumber m (Batchelor
and Gill 1962; Khorrami et al. 1989):

i ait ~
My o Mo o5 = -
PR w=p=b=0, form , (25a)
ii, =il,=Ww=p=>b=0,form =2 (25b)
The boundary conditions at 7 = Rmax are given by
i, =iy=w=p=>b=0 (26)

In accordance with the numerical solutions (i.e., Barkan et al.
2017), we choose free-slip, rigid wall, and no-flux boundary con-
ditions in the vertical direction, i.e.,

w=—=—=0,atz=0,1.
dz 9z

@7)

b. Numerical methodology

Equations (21a)-(21e) are discretized using the second-
order finite-difference method. The resulting discretized
Egs. (21a)—(21e), using Eq. (24), and with boundary conditions
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[Egs. (25a)-(25b), (26), and (27)] can be expressed as a stan-
dard generalized eigenvalue problem:

AX = BX, (28)

where @ is the eigenvalue and X = [i,. it W, D, B1" is the ei-
genvector. The sparse matrices A and B are of size (SN,N,),
with N, and N, denoting the number of grid points in the r and z
directions, respectively. The eigenvalue problem in Eq. (28) is
solved using the FEAST algorithm, which is based on the com-
plex contour integration method (Polizzi 2009). In what follows,
we only consider the perturbation mode with the largest growth
rate for a given value of m. The benchmark of the eigensolver is
discussed in appendix A.

The grid convergence results (appendix B) are obtained for
the most unstable mode (i.e., m = 7) by varying the number
of grid points from N, = 50 to N, = 100 while keeping the ra-
tio N/N, = Rmax. Convergence is obtained for N, = 80 and
N, = 720 (Fig. B2). Furthermore, we check the sensitivity of
the results to the domain size in the radial direction by com-
paring between Rmax =6 and Rmax =9 and find little differ-
ence (Fig. B1). This indicates that our results are not
influenced by our choice of boundary conditions. In what fol-
lows, we present the linear stability results using N, = 80,
N,=720,and R, =9.

6. Results of the stability analysis and comparison with
the numerical solution

The linear stability analysis described in the previous section
is carried out for the two basic states (Fig. 6) corresponding to
the simulated anticyclonic eddy (case 1) and the smoothed-strain
version (case 2; AAI stable). The growth rates and frequencies
for different azimuthal wavenumbers are nearly identical for the
two cases (Figs. 7a,b), with the most unstable modes correspond-
ing to m = 7-9 (the most unstable mode is m = 7 and m = 8 for
case 1 and case 2, respectively). Furthermore, the eigenfunctions
also share similar spatial structures (Figs. 7c,d), with a clear sig-
nature of a radiating IW that closely resembles the spiral-shaped
IWs emanating from the edge of the eddy in the numerical solu-
tion (Figs. 1c,d). Although it is possible that some weakly unsta-
ble AATI modes are also excited in case 1 (we only look for the
most unstable modes in our analysis), these findings suggest that
the spontaneous IW emission in the numerical solution is likely
the result of radiative instability.

a. Kinetic energy exchanges

To further establish the connection between the linear sta-
bility analysis and the numerical solution, we compare the ex-
change terms in the evolution equation of the perturbation
KE. Due to a near-axisymmetric structure of the eddy (e.g.,
Fig. 1a), it is reasonable to define the perturbation quantities
in the numerical simulation as the deviation from the azi-
muthal average. With this definition, the dominant energy ex-
change terms can be expressed as”

2 The radial and vertical components of the mean flow are negli-
gible compared with the azimuthal component.
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FIG. 7. (a) Nondimensional growth rate @, = w,/f and (b) nondimensional frequency @, = w,/f for different values
of azimuthal wavenumber m, computed for the two basic states (Fig. 6). The perturbation frequency w; increases al-
most linearly with the azimuthal wavenumber m. A linear fit of the (b) data shows that the slopes of the curves (i.e.,
®;/m) are 0.17 and 0.19 for case 1 and case 2, respectively. (c),(d) The real part of the vertical velocity eigenfunction
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R(W) for the two basic states, for m = 7.

U
HSP = —u/u, 2
S Uty =2 (29a)
U
vsp = —ywu, Voo (29b)
Jz
BFLUX = w'b’, (29¢)

where (Uy), is the azimuthally averaged azimuthal velocity of
the eddy and the primes denote perturbations from the azi-
muthal mean. We verified that the perturbation quantities are
an order of magnitude smaller than the maximal magnitude
of the azimuthal velocity, consistent with linear stability the-
ory. The first two terms in Egs. (29a)-(29¢), horizontal
shear production (HSP) and vertical shear production
(VSP), are associated with the horizontal (radial) and verti-
cal shear of the mean flow, respectively. A positive value
of HSP (or VSP) describes the growth of the perturbation
KE at the expense of the mean flow KE. The third term in
Egs. (29a)-(29¢), the buoyancy flux (BFLUX), quantifies
energy exchanges between the perturbation kinetic and po-
tential energies.

The following perturbation KE equation—corresponding
to the linear stability analysis—is obtained by substituting
Eq. (24) into Eq. (21) and multiplying Egs. (21a)-(21c), with

o*, 9*, and W*, respectively,

20(K,), + R07<uru; = 2dyiy), + (i, — wriy),
b Trers
Curvature Coriolis
oU . . au . . ) &k
= —R08—~< M)y —Ro—(wirg), + (W*b), + V-(ip),
r —_———
——stab T BELUX ™ PWORK
Ek(2*V Laar v ara, - Laan + o2 0
+ Ek( . ,:_2”r”r + Vi, ;—2u9u9+aw W)

(30)

where K, = = 12,5 + dyiy + o®>WwiW*) is the perturbation
KE. The superscrlpt “stab” is added to the HSP, VSP, and
BFLUX to distinguish them from the exchange terms defined
in the numerical solution [Egs. (29a)—(29c¢)], but their physical
interpretation remains the same. The curvature term appears
due to the circular structure of the mean flow. It is purely
imaginary and thus does not contribute to the growth of the
perturbation KE. Similarly, the Coriolis term does not par-
ticipate in the growth of the perturbation KE either. The
PWORK term denotes the propagation of KE due to pressure
perturbations. It has a zero domain average because there is
no propagation of KE through the boundaries. The dissipa-
tion term (DISP) for the unstable perturbation is negligible
(not shown).

The comparison between the energy exchange terms in the
numerical solution and the linear stability analysis for case 1
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F1G. 8. A comparison of the energy exchange terms between the mean flow and the perturbation, computed
(a),(b) in the numerical simulations [Egs. (292)-(29¢)] and (c),(d) in the stability analysis of the case 1 with m = 7
[Eq. (30); superscript stab]. The HSP, VSP, and BFLUX are averaged over depth, azimuth, and time in (a) and over ra-
dius, azimuth, and time in (b). The time average in (a) and (b) is over 24 h. Similarly, HSP***, VSP*** and BFLUX®'*
are depth averaged and radially averaged in (c) and (d), respectively. The terms HSPs®®, VSP*®° and BFLUX"® are
dimensionalized using Egs. (20a)—-(20d). (a) The perturbation quantities in the stability analysis are multiplied with a
constant, which is obtained by matching the maximal magnitude of w from the stability analysis with the maximal magni-
tude of w’ at the radial location where HSP peaks. All quantities are expressed in units of watts per kilogram.

shows a reasonable agreement (Fig. 8). To obtain the magni-
tude of the energy exchange term in the stability analysis, we
multiply the perturbation fields %, it,, W, and b by a constant
defined such that |w| = |w’| at the radial location where the
HSP peaks. The dominant KE exchange term is the HSP
[Egs. (29a)—(29¢) and (30)], which is characteristic of the
lateral shear instability. The radial distributions of (HSP), .,
and (HSP®")_ show that the energy exchange occurs just
outside of the anticyclonic eddy (Figs. 8a,c), where the hori-
zontal shear of the mean flow is positive (e.g., red line in
Fig. 6a). This is because the perturbation phase lines are
tilted against the horizontal shear of the mean flow. The ver-
tical distributions of (HSP),., and (HSP*'*")_ suggest that
energy exchange occurs in the upper half of the domain
(Figs. 8b,d).

Ménesguen et al. (2012) performed a linear stability analy-
sis of an idealized AAI unstable basic state and showed that
the AAI growing modes had equal contributions from both
HSP and VSP. Since VSP is negligible in our solution (orange
lines in Fig. 8) and because similar dominant energy exchange
terms are found for case 2 (not shown), it is unlikely that the
most unstable modes in our solution are associated with AAI

b. Phase speed

Next, we evaluate whether the radial phase speed ¢, pre-
dicted by the linear stability analysis agrees with the computed
phase speed of the spontaneously emitted IWs in the numeri-
cal solution. By definition,

¢, = wlk, (31)

p
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FIG. 9. (a) Frequency-horizontal wavenumber power spectral density for the modeled vertical velocity w, at z =
1.5 km. The solid red line represents the theoretical estimate of the dispersion relation using Eq. (33) for vertical
mode n = 1. The horizontal dashed black lines mark the frequencies w = f, 1.2f, 1.3f, and 1.4f. (b) The time- and hori-
zontally averaged normalized stratification profile N/f, computed in the red box displayed in Fig. 1c, excluding the anticy-
clonic eddy region (time average is carried out over 35 inertial periods). (c) The horizontal wavenumber power spectral
density of the vertical velocity w [using Eq. (24) at ¢ = 0 after dimensionalization] at z = 1.5 km, based on the linear sta-
bility analysis of case 1, with m = 7. The power spectra density in (a) peaks in the range 1.2f < w;(cps) < 1.3f and
4 X 1073 < ky, (cpm) < 5 X 10~°, yielding a phase speed estimate of ¢, =056+ 0.1m s ! [Eq. (31)]. (¢) The horizontal
wavenumber and radial phase speed predicted by the stability analysis are k;, = 0.49 (cpm) and ¢, = 0.49 m s~ ', using

w; = 1.42f (m = 7 in Fig. 7b).

where o; is the frequency and k, = Vk? + P2 is the horizontal
(radial) wavenumber, with k and / denoting the x and y wave-
number components, respectively.

In the numerical solution, ¢, is computed by fitting the disper-
sion curves to the frequency-horizontal wavenumber power
spectral density of the modeled vertical velocity (Fig. 9a). This
is done by solving a Sturm-Liouville boundary value problem
for the IW vertical modes (Gill 1982):

|

where F,, denotes the eigenfunction and R,, denotes the de-
formation radius for the nth vertical mode and subject to
the boundary conditions 9, F, = 0 at z = 0, H. The resulting
IW dispersion relation (red line in Fig. 9a), computed from

w, = /1 + RZk2,

using the time- and horizontally averaged (excluding the eddy
region) buoyancy frequency N (Fig. 9b), shows a good agree-
ment with the modeled power spectral density.

In the linear stability analysis, the frequency wj; is calculated
directly for the various unstable modes (Fig. 7b). The corre-
sponding horizontal wavenumbers are estimated by comput-
ing the horizontal wavenumber power spectral density of the
vertical velocity w for a given mode m (Fig. 9¢).

The resulting k;, and associated ¢, [Eq. (31)] are well
within the range of the numerically computed phase speed
(Figs. 9a,c), supporting the premise that the spontaneously
emitted IWs result from a radiative instability of the anticy-
clonic eddy.

ad
0z

L
R

(ﬁaFn

N2 oz (32)

(33)

7. Discussion

The spontaneous radiation of IWs from the eddy in the nu-
merical simulation can be understood following the RIB in-
stability mechanism discussed in SMO4. In the classical
barotropic instability (e.g., Hoskins et al. 1985), the mecha-
nism leading to perturbation growth can be rationalized as
the phase locking of two counterpropagating vortex Rossby
waves (VRWs),? located in regions of opposite signs of the ra-
dial (horizontal) PV gradient. In contrast, the RIB instability
mechanism described by SM04 relies on an interaction be-
tween the exterior VRW and an outward-propagating IW.
Using the linear perturbation theory of a cyclonic Rankine
vortex, they showed that the deformation of the vortex PV
surface triggers a VRW with frequency ;. When |w;| > f, the
VRW excites an outward-propagating IW with the same fre-
quency. This radiative instability relies on the existence of a
critical layer, where the angular VRW phase velocity w;/m
matches the angular velocity of the eddy (). The location of
the critical layer is then defined by the resonance condition:

Qr,) = —w/m, (34a)
Ro/(r,) = —%%, (34b)

where Ro, = Q/f is the local Rossby number of the eddy.
Hodyss and Nolan (2008) and Park and Billant (2012) later
extended the work of SM04 and showed the prevalence of

3 VRWs are analogous to planetary Rossby waves that propa-
gate on meridional PV gradients (Montgomery and Kallenbach
1997). The term first appeared in the context of atmospheric hurri-
canes (Macdonald 1968).
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F1G. 10. Full solution of the perturbation vertical velocity w at Z = 0.75 for case 1 from the linear stability analysis
is constructed using Eq. (24) at ¢ = 0 for (a),(b) m = 5 and (c),(d) m = 7. (X, ¥) = (X/R, Y/R). The dashed magenta
lines in (c) and (d) indicate the critical radius 7 (Z = 0.75), where Ro{) = —@&,/m [nondimensional form of Eq. (34)].
The perturbation frequency w; of m = 5 and m = 7 is marked at the top corner of the (b) and (d), respectively. The thin
black lines in (a) and (c) show ¥ = 0. For m = 5, the perturbation frequency w; is a subinertial frequency; thus, there is
no radiative IW. Conversely, for m = 7, the perturbation frequency w; is a superinertial frequency leading to the spiral-

shaped radiative IW from the eddy.

this radiative instability in a baroclinic cyclonic eddy and a baro-
tropic anticyclonic eddy, respectively. In the former case, the
perturbation growth rate was somewhat reduced compared to
the barotropic case.

In this article, we demonstrate for the first time the emer-
gence of this radiative instability in forced-dissipative solutions
of the Boussinesq equations of motion. We hypothesize that the
flow field outside of the anticyclonic eddy acts to continuously
perturb its PV surfaces, thereby triggering the VRWs. For illus-
tration purposes, we contrast the eigenmode structures of two
unstable modes (Fig. 10): the mode m = 5—corresponding to a
subinertial perturbation frequency (»; = 0.82f, Fig. 7a), and
m = 7—the most unstable mode corresponding to a superiner-
tial perturbation frequency (w; = 1.42f; Fig. 7a).

For m = 5 (Figs. 10a,b), the eigenmode structure shows two
radial maxima, corresponding to two counterpropagating
VRWs, and no IW signature. In contrast, for m = 7 (Figs. 10c,d),
a distinct spiral pattern of IW is visible (consistent with the
numerical solution; Fig. 1c) that radiates out from the exte-
rior VRWs situated at the critical layer predicated by the
SM04 mechanism [Eq. (34)]. Similarly to m = 5, there are
still two counterpropagating VRWs that can induce mutual
amplification through phase locking. However, now, the am-
plification of the exterior VRW can further enhance the in-
teraction with the outward-propagating IW, thereby making

the spontaneous IW emission a self-sustained process. In con-
trast with SM04, we do not find clear evidence of azimuthal sym-
metrization of the eddy. This is potentially because SM04 is
considered a Rankine vortex where the radial gradient of PV
does not change sign and only a single VRW is excited. In con-
trast, in our solution, the PV gradient changes sign and therefore
supports the mutual amplification of two counterpropagating
VRWs (Fig. 10).

To estimate the magnitude of Ro; in the vicinity of the criti-
cal layer in our solution, we consider a shear layer of thickness
6, defined based on the radial distance corresponding to 80%
of the maximal radial shear magnitude at every depth (only
the upper half of the domain is considered; red dotted line in
Fig. 6¢). The associated depth-averaged azimuthal velocity
gives |Roj =~ 0.19. This value is consistent with the observed
transition from nonradiating to radiating instability occurring
around m = 5-6 (Fig. 7b). Moreover, the structure of the ei-
genfunctions and the estimated |Ro/| are very similar for case 2
(not shown), lending further support to the interpretation of
the observed insatiability as a radiative instability, following
the mechanism proposed by SM04.

Finally, we emphasize that there are some discrepancies be-
tween the predictions of the linear stability analysis and the
numerical simulation. In particular, the azimuthal wavenum-
ber of the radiated IWs appears to be higher than the most
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unstable mode ranges m = 7-9 (Figs. 1c and 7a). We do not
have a clear physical explanation for this disagreement. There
is undoubtedly a limit to the predictability of linear stability
analysis in finite-amplitude nonlinear simulations.

8. Summary

In this study, we investigate the processes leading to spontane-
ous IW emission from an anticyclonic eddy in the O(1) Rossby
number regime. We utilize a high-resolution, forced-dissipative
channel solution of the Boussinesq equations of motion and
show that spontaneous LOB around the edge of the eddy
closely coincides with the location of IW emission. Further-
more, we carry out perturbation KE analysis and 2D linear
stability analysis of the eddy and demonstrate that the LOB
and subsequent spontaneous emission occur due to radiative
instability, following the mechanism proposed by SM04. To
our knowledge, this is the first demonstration of this radiative
instability mechanism in a forced-dissipative Boussinesq so-
lution. In contrast with centrifugal instability (Carnevale et al.
2011) and ageostrophic anticyclonic instability (McWilliams et al.
1998; Ménesguen et al. 2012), this radiative instability is not spe-
cific to anticyclonic eddies and can occur in cyclonic eddies as
well, provided they are in the O(1) Rossby number regime.

In our idealized, high-latitude channel solution, the sponta-
neous emission results in a time-averaged IW energy flux of
0.2 mW m ™2, which is somewhat weaker than the values re-
ported by Alford et al. (2013), for a subtropical frontal jet.
Nevertheless, if ubiquitous, this radiative instability mecha-
nism can still provide a nonnegligible source of IW energy. To
evaluate whether this mechanism can significantly reduce the
eddy KE, we compute the spindown time scale:

K dd
P (35
4 H(D,), )

where Keqqy is the eddy KE and (@), is the time, azimuthal, and
vertical average of the radial IW energy flux (Fig. 3a). We find that
tsa =~ 320 days, suggesting that spontaneous IW emission is not an
efficient mechanism for depleting eddy KE in our solutions.

To identify this mechanism in oceanic observations, it is
necessary to collect measurements of the velocity field along
an eddy cross section (e.g., L’Hégaret et al. 2023). This will al-
low us to estimate the radial shear of the azimuthal velocity
dQ/or, from which the shear layer thickness 6 and the local
Rossby number ()/f can be estimated (e.g., Fig. 6¢). According
to our stability analysis, the azimuthal wavelength of the most
unstable mode is approximately 26, which gives an azimuthal
wavenumber m ~ wR/8. Thus, the instability can be of radia-
tive type if (wR/8)|Q/f > 1.

In our analysis, we ignored the eddy ellipticity, which has
previously been shown to affect the stability characteristics un-
der some circumstances (Ford 1994b; Plougonven and Zeitlin
2002). In addition, we have not examined the pathways of
the spontaneously emitted IWs toward dissipation and mix-
ing, through either nonlinear wave-wave interactions (e.g.,
McComas and Bretherton 1977) or wave-mean flow

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 55

interactions (e.g., Shakespeare and Taylor 2015; Nagai et al.
2015). Such endeavors are left for future work.
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APPENDIX A

Benchmark of the Linear Stability Code

The stability code used in this study is benchmarked us-
ing the results of Yim et al. (2016). Yim et al. (2016) car-
ried out a linear stability analysis of an axisymmetric eddy
with azimuthal velocity U of the form:

U(r, z) = rQ(r, z) = rQe "R -0, (A1)
where R is the radius of the eddy, H is its half-thickness, and

Qg is the maximum value of its angular velocity (). The basic
state is in gradient wind balance (Holton and Staley 1973), i.e.,

2U oU 0B
o5 -5 (A2
with
B(r, z) = B(z) + &2(Q + )Q, (A3)

where B(z) = N?z, the buoyancy frequency N is a positive
constant, and a = H/R. The characteristic velocity scale is
Uy = |Q|R and the Rossby number Ro = Q/f.* The Reynolds
number Re is defined as Re = (Q()Rz)/v = Ro/Ek, where the
Ekman number Ek = v/(fR?), and the Froude number is de-
fined as Fr = |Q|/N. The domain size is taken to be [0, 10R]
and [—5H, 5H]. The perturbation boundary conditions at
r = 0 and r = R are similar to Egs. (25a), (25b), and (26),
respectively. The boundary condition in the vertical direction
is as follows:

u, =u,=w=p=>b=0,atz=-5H,5H. (A4)

The numbers of radial and vertical grid points are N, = 200
and N, = 200, respectively.

A comparison of the maximum growth rates of the per-
turbations for different parameters is listed in Table Al for
m = 1 and in Table A2 for m = 2. Good agreement is
found with our stability code, with a maximal relative error
of less than 2%. Figures Ala and Alb show the real part
of the radial velocity i, and the azimuthal velocity #,, re-
spectively, and both velocity components compare well with
Fig. 13a of Yim et al. (2016).

4In Yim et al. (2016), Ro is defined as Ro = 2Q/f.
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TABLE Al. Maximum growth rate and frequency comparisons
between Yim et al. (2016) and the present stability code for m = 1,
a =12, Fr = 0.5, and Re = 10* and for different values of Rossby
numbers. The Yim et al. (2016) values are estimated from their

Fig. 10.
Ro&
Rossby No. (Ro) Yim et al. (2016) Present code
Ro =5 ~0.071-0.098i 0.072-0.094i
Ro =75 ~0.090-0.108i 0.091-0.1011
Ro =10 ~0.098-0.118i 0.098-0.117i

TABLE A2. Maximum growth rate and frequency comparisons
between Yim et al. (2016) and the present stability code for m = 2,
a = 12, Fr = 0.5, and Re = 10* and for different values of Rossby
numbers. The Yim et al. (2016) values are estimated from their

Fig. 15.
Ro®
Rossby No. (Ro) Yim et al. (2016) Present code
Ro =5 ~0.017-0.233i 0.016-0.236i
Ro =175 ~0.011-0.233i 0.012-0.235i
Ro =10 ~0.008-0.233i 0.008-0.234i
(?) R(a,) (b) R (d)
0.2
0.5 - 0.1
.05 - -0.1
-0.2
-1

0 1 2 3 4 5 6 0 1 2 3 4 5 6
r

i
FIG. Al. The real part of (a) the radial velocity eigenfunction R(iz,) and (b) the azimuthal velocity eigenfunction
R(it,) for the most unstable mode (m = 2), with Ro = 10, « = 1.2, Fr = 0.5, and Re = 10*. These results compare
well with Fig. 13a in Yim et al. (2016).
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APPENDIX B

Stability Analysis Sensitivity to the Radial Domain Size
and Number of Grid Points

In this section, we first test the sensitivity of the linear
stability analy51s to the radial domain size Rmax, by compar-
ing two cases: =6 and R a = 9. In both cases, we use
N, = 80 in the Vertical and set Nr/NZ = Rmax. The eigenval-
ues @ for different values of the azimuthal wavenumber m
agree well in both cases (Figs. Bla,b). Furthermore, the
real part of the vertical velocity eigenfunction R(#), based
on the most unstable mode m = 7, exhibits a similar struc-
ture in both cases (Figs. Blc,d). This indicates that the re-
sults presented in the manuscript are converged for the
maximal radial extent used (Rmax =9).

Second, we determine the grid resolution convergence
for the most unstable mode m = 7, for the AAI case (case 1
in Fig. 6). We vary the number of vertical grid points from

(@)
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N, = 50 to N, = 100 while keeping the ratio N /N, = Rmax,
where N, is the number of grid points in the r direction. We
consider the case with Rmax =9, which gives maximal matrix
sizes [A and B in Eq. (28)] of 450000%. We take the eigen-
value @ corresponding to N, = 100 as the ground truth and
define the relative error of the growth rate &, and of the fre-
quency @, to be

®.(N.) — & (N. = 100
8&,(N,) = ! ;)(N ’:(1100) ), (Bla)
5,(N.) — & (N. = 100
8a,(N,) = &i( g_(N“’l:( 0 ) (Blb)

For N, = 70, we obtain a relative error of = 5% for both
®, and @, (Figs. B2a,b). The results presented in this manu-
script are therefore calculated for N, = 80 and Rmax =9.

0.04 4.
[} ~
/ b b Rmru:: 6
0.03 / \\ Ripw=9 3
S~
~0.02 // Ny %, »
r. / -~
001 7 1 4 /./
/N
0 T T T T 0 — T T T T
0 5 10 15 20 0 5 10 15 20
m m
(c) RWA)R,,,, = 6) (d) RA)R, . = 9)
! ' 0.2
' \ 0.1
|
1w 0.5 , \ ' 0
i |
0 -0.2
0 3 6 9 0 3 6 9
7 7

FIG. B1. A comparison of (a) the nondimensional growth rate @, = w,/f and (b) the nondimensional frequency

®; = w,/f for the cases with R

=6, 9 (blue and yellow lines, respectively) (c),(d) The real part of the vertical ve-
1001ty eigenfunction R(W) for the most unstable azimuthal wavenumber m = 7, for R

=6 and R =9, respec-

tively. The cyan line shows the critical radius 7 (%) given by Eq. (34). Note that the ﬁgure in (c) is plotted until 7 =9

for ease of comparison.
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