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ABSTRACT: Fronts and near-inertial waves (NIWs) are energetic motions in the upper ocean that have been shown to
interact and provide a route for kinetic energy (KE) dissipation of balanced oceanic flows. In this paper, we study these
KE exchanges using an idealized model consisting of a two-dimensional geostrophically balanced front undergoing strain-
induced semigeostrophic frontogenesis and internal wave (IW) vertical modes. The front-IW KE exchanges are quantified
separately during two frontogenetic stages: an exponential sharpening stage that is characterized by a low Rossby number
and is driven by the imposed strain (i.e., mesoscale frontogenesis), followed by a superexponential sharpening stage that is
characterized by an O(1) Rossby number and is driven by the convergence of the secondary circulation (i.e., submesoscale
frontogenesis). It is demonstrated that high-frequency IWs quickly escape the frontal zone and are very efficient at extract-
ing KE from the imposed geostrophic strain field through the deformation shear production (DSP). Part of the extracted
KE is then converted to wave potential energy. On the contrary, NIWs remain locked to the frontal zone and readily
exchange energy with the ageostrophic frontal circulation. During the exponential stage, NIWs extract KE from the geo-
strophic strain through DSP and transfer it to the frontal secondary circulation via the ageostrophic shear production
(AGSP) mechanism. During the superexponential stage, a newly identified mechanism, convergence production (CP),
plays an important role in the NIW KE budget. The CP transfers KE from the convergent ageostrophic secondary circula-
tion to the NIWs and largely cancels out the KE loss due to the AGSP. This CP may explain previous findings of KE trans-
fer enhancement from balanced motions to IWs in frontal regions of realistic ocean models. We provide analytical
estimates for the aforementioned energy exchange mechanisms that match well the numerical results. This highlights that
the strength of the exchanges strongly depends on the frontal Rossby and Richardson numbers.

SIGNIFICANCE STATEMENT: Fronts with large horizontal density and velocity gradients are ubiquitous in the
upper ocean. They are generated by a process known as frontogenesis, which is often initialized by straining motions of
mesoscale balanced circulations. Here we examine the energy exchanges between fronts and internal waves in an
idealized configuration, aiming to elucidate the mechanisms that can drain energy from oceanic balanced circulations.
We identify a new mechanism for energy transfers from the frontal circulation to near-inertial internal waves called
convergence production. This mechanism is especially effective during the later stages of frontogenesis when the
convergent ageostrophic secondary circulation that develops is strong.

KEYWORDS: Convergence/divergence; Frontogenesis/frontolysis; Fronts; Internal waves; Secondary circulation

1. Introduction drain a considerable fraction of their KE. To explain this
mechanism, Xie and Vanneste (2015) constructed an asy-
mptotic theory based on the generalized Lagrangian-mean
framework (GLM) to study the interactions between NIWs
and balanced quasigeostrophic (QG) flow. Wagner and
Young (2016) arrived at a similar NIW-QG coupled system
by using an Eulerian-based multiple time scale approach. In
both theories the NIW dynamics is governed by the so-called
YBIJ equation (Young and Ben Jelloul 1997).! The essential
ingredients in these reduced models are the conservation of
the total energy (QG + NIW) and the near-inertial wave ac-
tion (or wave kinetic energy). Rocha et al. (2018) studied the
NIW-QG system in coupled numerical simulations of baro-
tropic (2D) turbulence and NIW vertical modes. They dem-
onstrated that any reduction in the horizontal scales of NIWs
must be accompanied by an increase in wave potential energy

Mesoscale geostrophic eddies comprise the largest reservoir
of kinetic energy (KE) in the ocean (Ferrari and Wunsch
2009). Because their dynamics are constrained by geostrophic
and hydrostatic balances, they are expected, according to geo-
strophic turbulence theory (Salmon 1980), to transfer their
KE to larger scales (inverse cascade). The mechanisms that
halt that inverse KE cascade, and permit a forward KE cas-
cade to dissipative scale. have been a topic of much debate in
oceanography (Miiller et al. 2005).

We focus here on the mechanism first proposed by Gertz
and Straub (2009), whereby storm-forced near-inertial waves
(NIWs) can interact with mesoscale geostrophic eddies and
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and a subsequent reduction in the kinetic energy of the bal-
anced flow (a mechanism they referred to as “stimulated

! Later refined to the YBJ " equation (Asselin and Young 2019).
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generation”). It is noteworthy, however, that stimulated gen-
eration is only cleanly identified in the GLM framework
where the Lagrangian-mean balanced flow contains wave-
induced contributions. It remains difficult to evaluate stimu-
lated generation in Eulerian-based numerical models or in
situ measurements.

Thomas and Arun (2020) and Thomas and Daniel (2021)
used idealized numerical simulations of Boussinesq flow in
the small Rossby number parameter regime, characteristic of
QG dynamics, and showed that when the wave amplitude is
much larger than that of the QG flow (i.e., strong-wave limit),
NIWs can exchange energy with the balanced flow, thereby
facilitating a downscale KE cascade. It was further demon-
strated that when the wave and balanced flow amplitudes are
comparable, the downscale cascade is reduced and results in
the accumulation of KE at large scales. Using numerical simu-
lations of the NIW-QG reduced model, Xie (2020) demon-
strated that NIWs can catalyze a downscale energy flux of the
balanced mean-flow energy without a direct energy exchange,
unlike the model of Thomas and Daniel (2021).

Other numerical studies have examined more realistic con-
figurations and investigated the balanced flow evolution under
the influence of high-frequency wind forcing. For example,
Taylor and Straub (2016) simulated an eddy-permitting wind-
driven channel flow and showed that the Reynolds stresses as-
sociated with NIWs can provide a route for KE dissipation of
mesoscale geostrophic flow. Barkan et al. (2017) used a simi-
lar configuration albeit with a much higher spatial resolution
that allowed to simulate submesoscale currents, which are
characterized by a much larger Rossby number (Thomas et al.
2008; McWilliams 2016). They demonstrated that the internal
wave-induced energy pathways include two routes—first, di-
rect energy extraction from the mesoscale flow by the exter-
nally forced NIWs followed by an internal wave downscale
KE cascade to dissipation, and second, a stimulated imbal-
ance process that involves an IW triggered forward energy
cascade from meso to submeso time scales.

The effects of strongly baroclinic fronts on the polarization
relations of NIWs and the subsequent energy exchanges were
studied by Thomas (2012). Thomas (2012) developed an ide-
alized model for an unbounded two-dimensional front and
showed that NIWs efficiently extract energy from a geo-
strophic deformation field and transfer it to the ageostrophic
circulation that develops spontaneously during frontogenesis.
Whitt and Thomas (2015) used a slab mixed layer model to
illustrate that inertial oscillations can exchange energy period-
ically with a unidirectional, laterally sheared geostrophic flow,
and Jing et al. (2017) pointed out that it is the geostrophic
strain that makes this energy transfer permanent.

The motivation for the present work stems from the study
of IW and eddy interactions in Barkan et al. (2021), who ana-
lyzed realistic, nested, high-resolution simulations in the North
Atlantic Subpolar Gyre that included both NIWs and internal
tides. The authors demonstrated that wind forced NIWs trig-
gered a substantial transfer of KE from sub- to superinertial
time scales, which was spatially localized in strongly baroclinic
frontal regions that are characterized by high positive Rossby
numbers and strong horizontal convergence (Fig. 1). This
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strong departure from geostrophic balance is generic for
surface-intensified submesoscale fronts and filaments that are
prevalent during winter months (Capet et al. 2008; D’Asaro et al.
2018) and that cannot be adequately described by QG dynamics
(McWilliams 2016). To gain mechanistic understanding of these
energy exchanges, we developed an idealized model consisting of
a two-dimensional front undergoing strain-induced semigeo-
strophic frontogenesis (Hoskins and Bretherton 1972, hereinafter
HB72) and IW vertical modes. In the HB72 model, the frontal
sharpening process occurs in two stages—an “exponential”
growth stage, driven by the imposed geostrophic deformation
field, followed by a “superexponential” growth stage, driven by
the horizontally convergent ageostrophic secondary circulation
(ASC). This superexponential growth stage is characteristic of
the oceanic submesoscale frontogenesis that we aim to model
(e.g., Barkan et al. 2019). Recently, Srinivasan et al. (2022)
showed that the horizontally convergent ASC that drives sub-
mesoscale frontogenesis leads to a forward energy cascade.
Here, we demonstrate that the same horizontally convergent
ASC allows NIWs to extract KE efficiently from the frontal
circulations. Like Srinivasan et al. (2022), we refer to this new
IW-submesoscale exchange mechanism as convergence pro-
duction (CP). The CP is shown here to be the dominant KE
extraction mechanism by all NIW modes considered during
the superexponential frontogenesis stage.

The paper is organized as follows: in sections 2 and 3 we
discuss the configuration used to study front-IW interactions,
distinguishing between minimum frequency (near-inertial)
and high-frequency IWs. The details of the numerical setup
are provided in section 4, and in section 5 we discuss the evo-
lution of the mean flow. A detailed analysis of the front-IW
energy exchanges is shown in section 6. Finally, in section 7,
we summarize our findings and draw connections to realistic
ocean scenarios.

2. Problem configuration

An idealized configuration is developed to study front-IW
energy exchanges. The configuration consists of a 2D (i.e., in-
variant in the x direction) geostrophically balanced front un-
dergoing strain-induced frontogenesis in a vertically bounded
domain of depth H, to which we add IW vertical modes. The
domain is periodic in the horizontal direction with width L.
The model assumes a time-scale separation between the mean
flow and IWs, where the mean-flow evolution is governed by
the HB72 uniform potential vorticity (PV) frontogenesis model.
The dynamics of the linear IW vertical modes are governed by
the hydrostatic, Boussinesq equations of motion for a rotating
fluid under the f-plane approximation.

a. Uniform PV HB72 model

The mean-flow velocity [U = (U, V, W)], buoyancy (B),
and pressure (P) fields in the HB72 model take the form

U=oax+ Uy, z1), (1a)
V=—ay+ V(,z1), (1b)
W =Wy, z, 1), (1c)
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FI1G. 1. Interactions between IWs and submesoscale fronts and filaments in realistic simulations of the North Atlan-
tic Subpolar Gyre region during winter (adapted from Barkan et al. 2021). Representative snapshots of (a) the mixed
layer integrated KE energy transfers from sub- to superinertial time scales (indicated by positive IInrw values) com-
puted using the coarse-graining approach (Eyink 2005), and (b) the 90th percentile of subinertial horizontal buoyancy
gradient magnitudes |V, B|, representing submesoscale frontal regions. Insets in (a) and (b) illustrate how flow struc-
tures with strong positive KE transfers from sub- to superinertial motions are collocated with submesoscale frontal re-
gions. (c) Time mean sub- to superinertial KE transfers, averaged separately over the entire domain (solid black line)
and over frontal regions (dashed black line), demonstrate that the strongest interactions are found at submesoscale
structures. The time-mean, frontal averaged, root-mean-square (rms) of (d) the Rossby number, Ro, (defined as the
vertical vorticity { normalized by the local Coriolis frequency f; solid black line) and (e) horizontal divergence normal-
ized by the Coriolis frequency [rms(5/f); solid black line] show the significant ageostorphic frontal circulations that are
dominated by cyclonic and convergent motions [positive Ro skewness and negative 8/f skewness; solid blue lines].

(1d) hydrostatic balance with the mean-flow buoyancy B = —gp’/p,
(p’ is the mean-flow density perturbation relative to the refer-
ence density pg, and g is the gravitational acceleration).

In semigeostrophic theory the alongfront velocity U is
purely geostrophic

P= Py(x,y) + P(y, z, 1),
B =B(y, z, 1), (le)

where « denotes a spatially and temporally uniform large-scale
geostrophic strain, which is used to initiate frontogenesis, and 19P
the velocity components U, V, and W are oriented in the v="0,= “Fay
X, ¥, and Z directions, respectively. The mean-flow pressure P

consists of a pressure field that balances the geostrophic defor-  and the buoyancy field B is related to U, via the thermal-wind
mation flow P, = —p,[o?(x? + y?)/2 + foxy] and P, whichisin  balance,

@
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FIG. 2. The initial condition of (a) the alongfront velocity U o, 2) = U(y, z,0) [Eq. (9a)] and (b) vertical vorticity
Sol= —9,U(y, z, 0)] normalized by the Coriolis frequency f. Contour lines of the initial buoyancy field B [Eq. (9¢c)] are

displayed with a 0.22 contour interval (the solid and dotted lines show positive and negative values, respectively).

aU

N ®

where S = —aB/dy. The associated hydrostatic PV, g, is de-
fined as

q(y, z, 1) = (f£ + VX U)- VB. (4)

In this study we follow the formulation of Shakespeare and
Taylor (2013) to solve the HB72 model, using the generalized
momentum coordinates

Y = e‘”( - [7/), (5a)

Z =z, (5b)
T=rt (5¢)

For a mean flow with uniform PV, the associated buoyancy
field can generally be defined as

B(Y,Z,T)= N*Z+ B(Y) + AB(Y, Z, T), (6)

where By(Y) represents an imposed initial buoyancy distribu-
tion, which we pick to be

B,(Y) = .% erf(Y/)), 7)

where A is the cross-frontal length scale. This initial buoyancy
distribution describes a localized frontal zone with characteris-
tics horizontal buoyancy gradient S? = .%/A. In appendix A
we show that AB represents the buoyancy anomaly required
to satisfy the uniform PV ansatz [Eq. (A4b)], and that the evo-
lution equation for semigeostrophic frontogenesis is given by

9 9 dB

2_+ 22aT_) — _pal 770
(f iz TNV )P T ®
where (Y, Z, T) = LZH U(Y,Z, T)dZ'. We assume top and
bottom rigid lid boundary conditions and that all fields decay
to zero away from the frontal zone (e.g., as y — *). The
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above equation can be solved using a Fourier transform in Y
and sine transform in Z (to satisfy the rigid lid conditions),
given a prescribed initial buoyancy field By(Y) [e.g., Eq. (7)].
Once the solution of ® is known, the solutions of alongfront
velocity U(Y, Z, T), flow buoyancy B(Y, Z, T) and ASC
streamfunction ¥ are obtained by using Egs. (A14)-(A16),
respectively. To facilitate the connection between our model
solutions and realistic oceanic flows we nondimensionalize
mean-flow variables U, V, B, and V¥ using

U= |S2|L/f U, (9a)
V= 27‘" 0, (9b)
B = %, (9c)
V= zf—“ UH, (9d)

where the scaling for the cross-front ageostrophic velocity V
follows the semigeostrophic frontogenesis scaling of HB72.
The initial alongfront geostrophic velocity U and the initial
Rossby number, Ro, (defined as the initial vertical vorticity ¢y
normalized by Coriolis frequency) are shown in Fig. 2. The
initial Rossby and Richardson numbers are set to be small
and large, respectively, to mimic an oceanic mesoscale frontal
zone (Table 1).

b. Internal wave evolution equations and
initial conditions

The evolution equations for the IW velocity [u = (u, v, w)],
buoyancy (b), and pressure (p) are

Du s?

— - (1+Ro)fv+=w+au= 1

Dr ( o)fv 7 w+ au = 0, (10a)
Dv aV ap
vt w—tfu—av=—— 1
D v+ w iz fu—av oy’ (10b)
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TABLE 1. The nondimensional parameters governing the 2D
front-IW model.

KAR AND BARKAN

Parameter Definition Value
Nondimensional parameters for the front
NH Aspect ratio of the initial front 200
Roims Initial root-mean-square Rossby 0.03
number of the front
(Rig)rms Initial root-mean-square Richardson 15
number of the front
alf Deformation ratio (0.04, 0.1)
Nondimensional parameters for the NIW
olf Initial nondimensional NIW frequency 0.98
Bu Burger number of the NIW 2.24
Nondimensional parameters for the high-frequency IW
olf Initial nondimensional high-frequency IW 1.50
Bu Burger number of mode-1 high- 1.18
frequency IW
d
0=-24p, (10¢)
a9z
Db B
— - S+ —w=0, 10d
Dt v a0z (10d)
) J
Wi, (10e)
dy 0z

where the material derivative D/Dt = /ot + (V — ay)loy + Woliz,
the Rossby number Ro is defined as Ro = —d,U/f = [/f,
6 = dV/oy is the horizontal divergence associated with the
ASC and the thermal-wind balance [e.g., Eq. (3)] is used to de-
rive Eq. (10a). Because we only consider linear wave dynam-
ics, quadratic wave quantities are discarded and our model
cannot capture wave-wave interactions. Furthermore, the in-
clusion of phase-averaged wave momentum and buoyancy
fluxes in the mean-flow evolution equations (i.e., full coupling)
is left for future work.

To derive the IW initial conditions, we set « to zero and exploit
the fact that the initial conditions for the mean flow contain no
ASC (Vo = Wy = 0), such that D/Dt can be approximated by
dlot. The problem configuration allows us to introduce a stream-
function y such that

ax
=2 11
VT (11a)
4
=-2 11
W= (11b)

and simplify Eqgs. (10a)-(10e) to a single partial differential
equation for x (e.g., Whitt and Thomas 2013)

92 19? 92 92
( 2+ —)—X +287 X 4 N22X g,
02 az2 dydz

Z0y?
where f,, =fV1+Ro is the effective Coriolis frequency
(e.g., Kunze 1985). To make progress, we assume that the var-
iables f.¢ and S? are constant, which is justified in the frontal

(12)
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zonal (=1 < y/A < 1in Fig. 2) when the initial Rossby number
is sufficiently small. Following Gerkema and Shrira (2005), we
look for plane-wave solutions of the form

X, z) = x(2)explilly — ¢, z)}exp(—iwt), (13)

where ¢, = §?/(f%; — «?) is a constant, o is the wave frequency,
and / is the wavenumber in the y direction. Substituting the above
ansatz into Eq. (12) yields

d’x

—5 4 P(c} — ¢ =0,

e (14)

where ¢, = N?/(f%; — o?) is, again, assumed constant.
Equation (14), subject to the boundary conditions,

Xz=0=xz=-H)=0 (15)
has solutions of the form
- . nw
%,(2) =4, sinlm,2), m, ="T, (16)

where m,, is the vertical wavenumber of the nth mode, and

., € R. The remaining fields are given by Egs. (11a), (11b),

(10a), and (10d)

v, w] = [=ile, %, +9,%,, —ilx,lexpl{il(y — ¢;2) — iwt},
—_— \:-/

v w
(17a)
u= Lf(fjfff, — S%w)explil(y — ¢,z) — iwt}, (17b)
w,
b= i(S2~ — N¥w)exp{il(y — €,z) — iwt}, (17¢)
w
with the dispersion relation
PN? 4m2 S§4
2 _ 2
0} foerm(lt 1+ [2]'\’/4)
PN? 4
=fh+—=|1x 1+
g m* g 09

where the geostrophic Richardson number and IW Burger
number are defined as

Ri, = N*/(0,U)" = °N’/S*,  Bu= (PN)/(f*m}).  (19)

For finite scale low-mode IWs in a geostrophically balanced
frontal zone Bu~ O(1), Ri, >>1 and 4/(Ri;Bu) << 1 (the
initial values of Ri,, Ro, and Bu are displayed in Table 1).

The expression in the squared root can thus be expanded in a
Taylor series, and Eq. (18) becomes

EN? m28*
o2 ~ esz + ZmZ[l + (1 +2 ﬂN“)}'
n

(20)
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F1G. 3. Initial conditions for mode 1 (a),(c) alongfront and (b),(d) cross-front IW velocities [normalized by the
square root of initial domain-averaged wave KE, 4/{K(0)}]. Contour lines of the initial buoyancy field B [Eq. (9¢)] are
displayed with a 0.22 contour interval (the solid and dotted lines show positive and negative values, respectively). The
NIW frequency (case I, = 0.98f) is computed from Eq. (21a) using the initial rms Ro and Ri, values (Table 1). For
the NIW, phase lines are parallel to isopycnals near the frontal zone whereas for high-frequency IW (case I, o = 1.5f)
phase lines are tilted against the isopycnals near the frontal zone. Note that the “high” mode structure in case I is a re-
sult of the baroclinicity of the mean flow, not the initial conditions.

From Eq. (20) the minimum IW frequency wpn;, and the
polarization relations are

o ~ fy/1 + Ro = Ri; ", (21a)
2
(, v, w) ~ v(i Omin Sﬁ) (1b)

where the smallness of 1/(Ri,Bu) has been used. This recovers
the expressions derived in Whitt and Thomas (2013) and
shows that vorticity and baroclinicity allow the IW frequency
to be lower than the inertial frequency.” The corresponding
horizontal group velocity ¢ 5 takes the form

N3 (w? — ? 2

~ + min

% " Tm w28t + NX(a? — 2]

(22)

where the positive (negative) sign corresponds to / > 0 (I < 0).

The IW initial conditions consist of a Gaussian packet of a
mode-1 IW [m; in Egs. (17a)—(17c)], with a horizontal width of
three wavelengths (67r/]), and with phase lines approximately

2 The imposed geostrophic strain modifies the IW frequency at
O[(a/f)*], which is negligible in our case compared with the effects
of vorticity and baroclinicity (Jing et al. 2017).
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parallel to (case I: NIW) or tilted against (case II: high-frequency
IW) isopycnals (Fig. 3). Evidently, our assumptions of an initially
constant Ro and $? (or Ri,) do not hold over the entire domain
and so the NIW isophases are only approximately parallel to iso-
pycnals in the frontal zone. Nevertheless, as will be shown in the
following sections (see also Movie 1 in the online supplemental
material), the TW mode in case I behaves like a minimum fre-
quency wave because it remains phase-locked to the frontal zone
[c s 0, Eq. (22)] and is, therefore, more likely to exchange en-
ergy with the frontal circulations (Thomas 2012). On the contrary,
case II corresponds to a higher-frequency IW (viz., = 1.5f) that
can propagate away from the frontal zone [c¢ . #0,Eq. (22)] and
is, therefore, less likely to exchange energy with the frontal flow.
In section 6 we compare and contrast the two cases.

3. Internal wave energy equations

The following IW KE equation is obtained by multiplying
Eq. (10a) with u and Eq. (10b) with v,

oK oK S?

— = —V-(VK) + ay— ——uw — fRouv — a(ti* — 1?)

ot ay f  ———
——— LSP DSP

ADVEC GSP

v
—8v2 —vw— +wb —V-vp, (23)
Zov Frpaii

CP — —BFLUX pwQORK

AGSP
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where K = 1202 + v?), V = @0y, 9z), v = (v, w), V = (V, W).
The energy exchange terms in (23) are the geostrophic shear
production (GSP), denoting wave-mean-flow energy exchanges
associated with the geostrophic vertical shear; the lateral shear
production (LSP), denoting wave-mean-flow energy exchanges
associated with the geostrophic lateral shear; the deformation
shear production (DSP), denoting energy exchanges due to the
imposed deformation flow; the ageostrophic shear production
(AGSP), denoting wave-mean-flow energy exchanges associ-
ated with the ageostrophic vertical shear; the convergence pro-
duction (CP), denoting wave-mean-flow energy exchanges
associated with the lateral ageostrophic horizontally divergent
motions; the buoyancy flux (BFLUX), indicating the energy ex-
changes between wave kinetic and potential energies; the pres-
sure work (PWORK), denoting wave energy changes due to
the propagation of pressure perturbations.
The advection term ADVEC can be expressed as

ADVEC = —V- (VK) + ;—y(ayK) — oK. (24)

The first term on the right-hand side of the Eq. (24) vanishes
when averaged over the domain for our choice of boundary
conditions, while the second term vanishes because in our nu-
merical model, K is set to zero at the periodic boundaries
(e.g., Fig. 3). The third term, however, is an effective energy
sink due to the imposed strain in a 2D configuration. Al-
though the energy sink magnitude is larger than that of the
various exchange terms, it does not represent an energy ex-
change between the wave and mean flow. We verified that it
does not affect the energy exchanges discussed in the manu-
script by rerunning the numerical simulations with an artificial
source term that compensates for the energy loss (not shown).
We, therefore, focus on A(K) (), which represents solely the
domain-averaged IW KE changes at time ¢ relative to the initial
time ¢t = 0 due to front-IW energy exchanges. A(Kje)(?) is de-
fined as

A(K,)(0) = (K)(1) = (K)(t = 0) = J; (ADVEC)dt

!
= I (GSP + LSP + DSP + CP + AGSP
0

+ BFLUX)dr, (25)
where the notation (-) denotes a domain average and
(PWORK) = 0 for our choice of boundary conditions (section 4).

In section 6 we evaluate all the terms in Eq. (25) in several
numerical experiments with different strain magnitudes, IW
initial conditions, and vertical modes.

4. Numerical setup

The problem configuration detailed above describes a
slowly evolving mean flow following the HB72 uniform PV
model and a fast-evolving IW vertical mode. The IW evolu-
tion Egs. (10a)—(10e) are solved using the pseudospectral
code Dedalus (Burns et al. 2020) for two different values of
imposed geostrophic strain, « = 0.04f, 0.1f. The horizontal
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wave velocities u, v are expanded using cosine expansions in
the vertical to satisty free-slip boundary conditions. The verti-
cal wave velocity w is expanded using a sine expansion in the
vertical to satisfy the rigid lid boundary conditions. The wave
buoyancy b is expanded using cosine series in the vertical direc-
tion to satisfy no flux boundary conditions. All wave fields are ex-
panded with Fourier series in the y direction because we assume
a local frontal zone with all fields vanishing as y — *c. Time-
stepping is performed using a third-order 4-step implicit—explicit
Runge-Kutta scheme with a time step of 20 s.

We add diffusivity operators of the form

g = V( (26)

2 9P o
-4+
ay?  9z?

_Vha}7

to the right-hand side of the momentum and buoyancy [Egs.
(10a), (10b), (10d)]. The inclusion of lateral hyperviscosity/hy-
perdiffusvity is required for numerical stability because the
grid spacing in the y direction is much larger than in the z di-
rection (Table B1 in appendix B). We refrain from using hy-
perviscous operators in the z direction to mimic ocean
models, where vertical diffusion is elevated in the mixed layer
[e.g., K-profile parameterization (KPP); Large et al. 1994].
The corresponding numerical wave KE dissipation is

DISP = uZ(u) + vZ(v). 27)
In the following analysis, DISP is time integrated and domain
averaged, like the other terms in Eq. (25). Details of the di-
mensional quantities used in the numerical simulation are
given in Table B1.

5. Frontogenesis

In 2D semigeostrophic frontogenesis (HB72; Hoskins 1982),
the initial frontal sharpening is dominated by the externally
imposed geostrophic strain field «, leading to an exponential
sharpening rate (the exponential stage). The convergent ASC
that develops about the front gradually becomes stronger until
it dominates the geostrophic strain, driving a superexponential
sharpening rate that leads to a finite time singularity in the in-
viscid limit (the superexponential stage). These two growth
stages are shown in Fig. 4 for two different values of a. A com-
parison between the « values (Figs. 4a,b) shows that as « in-
creases, the sharpening rate also increases, and the duration of
the exponential and superexponential stages are shortened.
Accordingly, the frontogenesis duration reduces from 6.86 to
2.78 inertial periods as « increases from 0.04f to 0.1f. Because
HB?72 is an inviscid model the duration of the superexponen-
tial stage is completely determined by numerical diffusion,
which prevents the finite time singularity. Therefore, to com-
pare energy exchanges between the front and IWs during
exponential and superexponential stages we compute time-
averaged values of the different exchange terms [Eq. (25)]
over each frontogenetic stage duration (Table 3).

Strong buoyancy gradients at frontal regions are often asso-
ciated with strong divergence § = d,V and vorticity { = —,U
signals. In semigeostrophic frontogenesis, the frontal flow is
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(b) a=0.1f

te =2.25T; ty = 2.78T,;

log( (ayg)rms/(&}’BO)rms)

t/T;

FIG. 4. The root-mean-square (rms) horizontal buoyancy gradient evolution (ayAB )

t/T;

(where j = y/A) computed in

ms

the frontal region for two different values of «. The frontal region is identified as the region where

©,B) > 010, B)} -

The end of the exponential (denoted by ¢,) and superexponential (denoted by ) frontogenetic

stages are marked above the thin vertical blue and red lines, respectively. Time ¢ is normalized by the inertial

period 7.

characterized by 8,/f = a/f and Royys = {my/f = 1 during the
exponential phase (Table 2 and Figs. 5a,b), whereas during the
superexponential stage, it is characterized by &,,¢/f => o/f and
Royys => 1 (Table 2 and Figs. 5c,d). In addition, ROy, => Simd/f
at all times (the alongfront geostrophic velocity is always larger
than the cross front ageostrophic velocity) with finals_ /f ~ O(1).
During the exponential stage, a near-perfect symmetry is observed
between cyclonic/convergent and anticyclonic/divergent circula-
tion patterns (Figs. Sa,c). One and a half inertial period later, in
the superexponential stage, an asymmetry between cyclonic
and anticyclonic circulation develops, with near-surface con-
vergence and vorticity values that increase by an order of
magnitude (Figs. 5b,d). During that time, the frontal width
[computed in the region where (ayB)Z > O.l(ayB)fnax, just be-
low the surface] is decreased 50-fold. The dynamical regime
during the superexponential stage, therefore, qualitatively
represents surface intensified oceanic submesoscale fronts
and filaments during winter months (e.g., Fig. 1).

6. Energy exchanges

The front-IW energy exchanges are explored for minimum
frequency (near-inertial) and high-frequency waves (cases I
and II in Fig. 3) with vertical modes 1-3 and subject to two
different imposed strain values. We distinguish between en-
ergy exchanges during the exponential and superexponential

TABLE 2. The rms normalized vertical vorticity (Royms = &ms/f)
and horizontal divergence (8¢/f) during exponential and
superexponential stages of frontogenesis, computed in the frontal
region (same definition as in Fig. 4) for two values of «.

frontogenetic stages (Fig. 4), which are characteristic of oce-
anic mesoscale and submesoscale frontogenesis, respectively
(Barkan et al. 2019).

The phase structure and KE exchanges with the mean flow
are substantially different between near-inertial and high-
frequency waves (Fig. 6 and Supplemental Movie 1). The
NIW remains in the frontal zone because the horizontal group
velocity ¢, —0 [Eq. (22)], as discussed in Thomas (2012),
and nearly all of its kinetic energy remains in the frontal zone
during frontogenesis (Fig. 6a). This is in contrast with Rocha
et al. (2018), who reported NIW energy escape from baro-
tropic and geostrophic straining regions. Therefore, in our
model, the NIWs are likely to exchange energy with the fron-
tal circulations. On the contrary, the high-frequency wave is
able to escape the frontal zone (c, # 0), with nearly all of its
energy found outside the frontal reglon before the superexpo-
nential stage is reached (Fig. 6d). The higher the initial IW
frequency is, the faster it escapes the frontal region (e.g., the
intersection between the solid and dashed magenta lines in
Fig. 6d is shifted to the left by ~0.27; when the initial IW fre-
quency is increased from 1.5f to 3f).

a. Case I: Minimum frequency wave (NIW)

The dominant KE exchange terms for the minimum fre-
quency mode-1 NIW include the DSP, CP, and AGSP (Fig. 7
and Table 3) As discussed in Thomas (2012), the NIW is able
to extract energy from the imposed deformation field (DSP > 0)
when the frontal baroclinicity and vorticity modify the wave
polarization relations, leading to rectilinear hodographs (i.e.,
[u] > |ul; Figs. 6¢,d) and anisotropic horizontal momentum fluxes.?
The NIW loses its energy to the ASC when the wave isophases
are tilted with the ageostrophic shear (solid blue line in Fig. 6d;

a = 0.04f a = 0.1f
Terms t= STZ t= 68T1 t= 225T, t= 27T,
ROy 037 8.11 0.42 6.88
Srmslf 0.02 0.98 0.06 1.35

Brought

Spec1flcally for a minimum frequency wave |ul/[v| =
(1 +Ro - Ri, )12 as discussed in Whitt and Thomas (2013).
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Ro
o 086_1) t=12T; (b) t =2.7T;
: 0.4 , 5.0
—0.25 1 ; 0.2 1 2.5
5—0.50- 0.0 1 0.0
ne
—0.75 1 ' . -0.2 -2.5
—1.00- —04 , l -5.0
6
0080) t=12T; /T (a) t=2.7T,
U7 0.04 / 1.0
—0.25 1 I ' 0.02 1 0.5
E —0.50 1 0.00 1 0.0
e
—0.75 1 —0.02 —0.5
—1.00 —0.04 , / -1.0
2250 —125 000 125 2.50 -250 —-125 000 1.25 2.50
y/A y/A

FIG. 5. Snapshots of (a),(b) the Rossby number Ro and (c),(d) the normalized horizontal divergence of the ASC
6/f, in the numerical simulation with & = 0.1f. (left) Exponential and (right) superexponential frontogenesis stages
[see Fig. 4b]. Here, T is the inertial period. Note the different color bar ranges between (a) and (b), and (c) and (d).

AGSP < 0). The AGSP is the main inviscid mechanism that
drains NIW KE. This transfer of wave KE to the ASC is different
from the IW reabsorption mechanism discussed in Nagai et al.
(2015), which occurs due to the normal component of the Rey-
nolds stresses (e.g., the equivalent of the CP mechanism).

The convergence production (CP = —8v?) is a newly iden-
tified mechanism for IW—front energy exchanges, which is as-
sociated with the convergence (or divergence) of the ASC.
Convergent (divergent) regions correspond to CP > 0 (CP < 0)
and wave KE gain (loss). This particular energy exchange
mechanism is absent in Thomas (2012), and the QG-NIW theo-
ries (Xie and Vanneste 2015; Rocha et al. 2018; Thomas and
Arun 2020), where the balanced (frontal) flow is horizontally
nondivergent.

During the exponential stage, the convergence of the ASC in
the frontal (cyclonic) region is rather weak and is comparable to
the divergence of the ASC in the anticyclonic region (Fig. 5¢). As
a result, there is a cancellation when CP is domain-averaged,
leading to small values compared to (DSP) (Table 3). During the
superexponential stage, however, when frontal sharpening is
primarily driven by the convergence of the ASC [|8]/f ~ O(1);
Fig. 5d], CP gradually begins to dominate the NIW KE gain (red
and blue lines in Fig. 7, red shading). Quantitatively, when time-
averaged over the superexponential stage only, (CP) > (DSP)
for all simulated strain values (Table 3). This CP dominance is
particularly evident when the DSP and CP terms are averaged
separately inside and outside the frontal zone (denoted by F and
OF, respectively; Fig. 8).

Inside the frontal zone the time-integrated (CP) increases
rapidly, in concert with the increased convergence of the ASC
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(Figs. 5¢,d), and dominates (DSP) r (solid red and blue lines in
Fig. 8, red shading). In fact, because the imposed strain is
constant everywhere, the DSP magnitude is approximately
the same inside and outside of the frontal region (solid and
dashed blue lines in Fig. 8). Furthermore, the cancellation be-
tween the positive (CP)r and negative (CP)or values are
clearly evident during the exponential stage (solid and dashed
red lines in Fig. 8, blue shading). The AGSP, which like CP is
determined by the magnitude of the ASC, is considerably
more negative when averaged inside the frontal zone (solid
and dashed green lines in Fig. 8). Interestingly during the
superexponential stage of frontogenesis the loss of wave KE
to the ASC via the AGSP is partially compensated for by KE
gain from the ASC via the CP (Table 3). We explain this re-
sult below.

The contribution of (BFLUX) is small in both stages of the
frontogenesis. This is in contrast with the theory of Xie and
Vanneste (2015), where BFLUX < 0 converts Eulerian-mean
NIW KE to wave PE (Rocha et al. 2018). The reason for such
a small value of BFLUX is explained in section 6a(1). Finally,
the remaining energy exchange terms in Eq. (23) remove a
small amount of NIW KE during both frontogenetic stages
(Table 3).

1) SPATIAL STRUCTURE OF THE ENERGY
EXCHANGE TERMS

To gain further insight into the IW—front energy exchanges,
we examine the spatial structure of the various KE exchange
terms in Eq. (23) during the exponential and superexponential
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FIG. 6. The wave kinetic energy fractions inside the frontal region ((Kz)/(K)) and outside of it ((Kor)/(K)) are shown for (a) minimum frequency
(case I) and (d) high-frequency (case II) waves. The frontal region is identified as the region where (E)yJ?)2 > O.I(Oyé)ﬁm, where y = y/A. Snap-

shots of mode-1 IW velocity components (b),(e) u and (c),(f) v [normalized by corresponding /(K (¢))] are plotted at ¢ = 27 based on a simulation
with o = 0.1f. Panels (b) and (c) correspond to case I, and (e) and (f) correspond to case II. The black contour lines in (b), (¢), and (f) display B
[Eq. (9¢)] with a 0.26 contour interval (solid and dotted lines show positive and negative values, respectively). Blue arrows in (c) indicate the profile
of the horizontal component of the ASC, V' [Eq. (38b)], at y = 0, illustrating that the ageostrophic vertical shear is tilted with the IW phase lines.

frontogenetic stages (Figs. 9 and 10, respectively) for a mode-1  hodographs (Figs. 6b,c), and is concentrated in the frontal (cy-
NIW (case [; section 6a) with a = 0.1f. clonic) region (Figs. 5a,b). As the front sharpens the positive

The time-integrated DSP is predominantly positive during  DSP signal is confined to a smaller area with larger value
both frontogenetic stages because of the rectilinear wave during the superexponential stages (Figs. 9c and 10c), in

5@ o =0.04f (b) a=0.1f
1.25 1
0.00 1
—1.25 1
—-2.50 . , .
0.00 2.50 5.00 6.86 0.00 1.00 2.00 2.78
t/Ti t/T;
— Jo{GSP)dt/|M(Kuer) (15e)] = Jo( CP )1 /|A{Kper) (15e)] — Jo{ BELUX )dt/|A(Kper) (15|
------ Jo(LSPYdt/|A(Kner) (tse)]  —— [o{ AGSP )t /|A(Ker)(1se)]  —— Jo({ DISP )dt/|A(Kper) (tse)|

- f(;( DSP >dt/|A<Knet>(tse)‘

FIG. 7. The various terms in the IW KE evolution Eq. (23) for numerical simulations with different « values and a
mode-1 IW, which is initially near inertial (case I). The end of the exponential and superexponential frontogenetic
stages are denoted by the thin vertical blue and red lines, respectively. Time is normalized by the inertial period 7;.
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F1G. 8. The DSP, CP, and AGSP terms (thin lines) in the IW KE evolution Eq. (23) for a mode-1 minimum fre-
quency IW (case I) with two initial strain magnitudes [(a) 0.04f, (b) 0.1f]. The exchange terms are averaged separately
over frontal regions (subscript F; solid lines) and outside the frontal region (subscript OF; dashed lines). The thick
lines show the theoretical predictions for DSP, CP, and AGSP [Egs. (38a)—(38c)], averaged over the frontal region.
The blue (red) shaded region shows the exponential (superexponential) frontogenetic stage. Time is normalized by

the inertial period 7;. Frontal regions are defined as in Fig. 4.

agreement with Table 3. The time-integrated AGSP is nega-
tive during both stages because the wave phase lines are
tilted with the ageostrophic shear (Figs. 6a,b), and is even more
tightly confined to the frontal region. Similarly to the DSP, it
occupies a smaller region as the front sharpens with larger
magnitudes in the superexponential frontogenetic stage
(Figs. 9¢ and 10e).

The cancellation between positive CP in the frontal region
and negative CP outside the frontal region during the expo-
nential stage (red lines in Fig. 8b) is clearly visible in the spa-
tial plot (Fig. 9d). As the convergent ASC strengthens during
the superexponential stage (Fig. 6d), CP becomes strongly
positive in the frontal region and dominates the negative sig-
nal outside the front (Fig. 10d), leading to a domain-averaged
positive contribution (Fig. 7b and Table 3).

The time-integrated LSP is everywhere an order of magni-
tude smaller than the remaining terms (Figs. 9b and 10b), as
expected from Table 3. The time-integrated BFLUX term
however (Figs. 9f and 10f) exhibits similar magnitudes to the
other terms, albeit with both positive and negative lobs that
cancel out when averaged over the entire domain (Table 3).
This is because the wave isophases are not exactly parallel to
isopycnals but, in fact, have a shallower slope (Figs. 3a,b).
Because the total buoyancy B + b is conserved (as shown
below), the wave must acquire a positive (negative) buoyancy
anomaly b in the region of lower (higher) B. In turn, regions
of positive (negative) b are associated with an increase
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(decrease) in wave PE and consequently, BFLUX < 0
(BFLUX > 0). Interestingly, the integrated GSP term has
similar spatial structures to the integrated BFLUX term
during both frontogenetic stages, albeit with opposite signs
(Figs. 9a,f and 10a,f).

To understand this feature in our solutions, we examine the
evolution of the total absolute momentum M = u + U — fy
together with the total buoyancy B + b, in the inviscid nondif-
fusive limit. For time scales sufficiently smaller than ™", it is
safe to assume that both the total absolute momentum and to-
tal buoyancy are nearly conserved. Following Whitt and
Thomas (2013), the x component of the wave velocity u can
be written as

s

oM oM
u(t + 87) — u(t) = —-VM - ér = -|—28Y + —£6Z
8 dy az

(28)

where My, = U — fy is the absolute momentum of the geo-
strophic flow, ér = y6Y + Z6Z denotes the position vector such
that 8Y = ["*"vdr and 8Z = [ wdr, and 8T < o™ is the
time duration. Similarly, it follows that the wave buoyancy b can

be expressed as

b(t + 8T) — b(t) = —VB - ér = —(‘g 8Y + B (SZ). (29)
ay 9z

Using Eq. (28), the GSP can be written as
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TABLE 3. The various energy exchange terms in the IW KE evolution Eq. (25), time-averaged over the exponential and
superexponential frontogenetic stages (blue and red shading in Fig. 4), for a mode-1, minimum frequency IW (case I) subject to
different o values. The time integration is from f, = 0 to t = ¢, for the exponential stage, and from ¢, = ¢, to t = f, for the
superexponential stage, where ¢, and #,. denote the end of the exponential and the superexponential stage, respectively. The energy
exchange terms are normalized by the magnitude of the net KE exchange over the integration time, |A(Kyer)(fse)|) and time is
normalized by the inertial period 7;. Angle brackets denote a domain average. Similar qualitative results are obtained for higher-
mode NIWs (see supplemental material). The bold values highlight quantities that are significant compared to the others.

Exponential Superexponential
Terms
a = 0.04f a = 0.1f a = 0.04f a = 0.1f
T [ ~0.03 ~0.05 0.02 0.05
=L J (GSPYAIIA(K, ) (1)
01
T ~0.01 ~001 ~0.02 ~0.04
=t J (LSP)dU|A(K, . )(t,,)|
0 Y1,
T 0.15 0.37 0.11 0.34
i J (DSP)dUIA(K, ) (1)
(R
T, 0.06 0.14 0.21 0.58
L J (CP)dIA(K, )1,
(L
T ~0.38 ~0.93 -026 —071
= J (AGSP)dIIA K, )(t,)
0 J14
T ~0.02 ~0.04 ~0.06 ~0.03
i J (BFLUX)d|A(K.._ (1)
0 Y1
~0.02 0,05 0.5 ~0.04

T
i J<Dlsp>dz/|A<Km>(zsc)|
[ [0 A

oM
—uw(ij =—[u(®) — VM, - érljw —=£, (30)
0Z |57 # 9z
and using Eq. (29), the BFLUX can be expressed as
wh| , 57 = w[b(t) — VB - or]. (31)

To compute the approximate GSP and BFLUX above we be-
gin with the initial conditions described in section 2b and time
step Egs. (28) and (29) to obtain u and b at all times. Equa-
tions (30) and (31) are then calculated every 10 min using the
numerical values of v, w, Mg, and B. The approximate GSP
and BFLUX fields, time integrated separately over the expo-
nential and superexponential stages, are shown as contour
lines in Figs. 9a, 9f, 10a, and 10f, respectively. The close re-
semblance between the approximate and true fields suggests
that the spatial structures of the GSP and BFLUX in our solu-
tions are a result of the conservation of total absolute momen-
tum and total buoyancy, respectively.

2) THE PARTIAL CANCELLATION BETWEEN CP AND
AGSP DURING THE SUPEREXPONENTIAL STAGE

An interesting feature in our solution is that during the
superexponential stage of frontogenesis, the loss of wave KE
due to the AGSP mechanism is partially compensated by the
KE gained from ASC via CP (solid red and green lines in the
red-shaded region of Figs. 8 and 10d,e). This can be better un-
derstood by projecting the wave momentum flux in the direc-
tion of the principal strain axes of the ASC. In general, the
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sum of CP and AGSP in the principal strain coordinates can
be expressed as
P+AGSP=-(0"+w)|—+ —| - @ —w" )2
C GS 2(U w )(ay 82) (v w )2 ,
(32)

where v, w’ are velocity components in the transformed coor-
dinates, given by

v = vcosep +w sinep, (33a)
w =-v sing, + w coso,, (33b)
and S, is
oV oW\ oV oWy’
S;Z:(——l/) +(—+1V). (34)
Jdy 0z 9z ay

The angle between the simulated coordinates and the princi-
pal strain coordinates 6,(y, z) is given by

0z +
tan20 :8V/dz oWlgy  dVioz

P aViay — oWloz  20Viay’ (35)

where the last step assumes (0W/y) << (9V/dz), consistent
with our numerical solutions.

Because our model is x invariant, the first term on right-
hand side of Eq. (32) is zero, and so

CP + AGSP = (w2 — u'z)%. (36)
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FIG. 9. (a)—(f) The various terms in the IW KE evolution Eq. (23) integrated and time-averaged over the exponen-

tial frontogenetic stage (blue shading in Fig. 4; ¢, and f,. denote the end of exponential and superexponential stages,
respectively), for a mode-1, minimum frequency IW (case I), subject to « = 0.1f. The approximate GSP and BFLUX
values in Egs. (30) and (31) are shown with contour lines in (a) and (f), respectively, where solid (dashed) lines denote
positive (negative) values with a 2.56 contour interval for GSP and a 2.14 contour interval for BFLUX. All fields are
normalized by the domain-averaged net KE exchange AKc(t) [Eq. (25)], and time is normalized by the inertial pe-

riod T;.

When w'? = /2, the wave-induced momentum flux in the
principal strain coordinates vanishes, and CP and AGSP have
equal and opposite signs. In this case tan26, ~ —v/(2w) and,
together with Eq. (35), we obtain w/v = (0W/az)/(0V/dz). This
implies that the net KE exchanges between NIWs and the
ASC are zero only when the phase lines of the NIWs are
aligned with the streamlines of the ASC. This particular con-
dition is nearly met during the superexponential stage, as the
ASC streamlines align more closely with the isopycnals, and
hence with the isophases of the NIWs (Figs. 11a,b).

b. Case II: High-frequency wave

Thomas (2012) demonstrated that higher-frequency IWs
gradually approach the minimum frequency as the front
sharpens. In this process, however, the wave phase lines be-
come nearly vertical (Figs. 6e,f), and the intrinsic horizontal
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group velocity ¢,, - *N/m, [Eq. (22)], allowing the wave to es-
cape the frontal region. Due to our configuration setup, the IW is
unable to propagate out of the imposed-strain influence, as in
Thomas (2019), and is instead halted where —c,, = (V — ay)
(see also Supplemental Movie 2). Consequently, the KE ex-
change terms with the front are substantially different than for
NIW (case I), where energy exchanges are confined to the
frontal region. The IW still gains energy through the (DSP), as
the hodographs remain rectilinear (cf. Figs. 6¢,f), but this hap-
pens outside of the frontal region (blue dot-dashed line in
Fig. 12b). This is because the imposed strain, «, acts to reduce
u? and induce stronger v%, which leads to a positive correlation
between « and (v* — u?) (Jing et al. 2017). The (BFLUX) is
now strong and negative (brown lines in Fig. 12), implying that
the wave KE is converted to wave PE. This is consistent with
the finding of Rocha et al. (2018), where it is shown that the
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FIG. 10. As in Fig. 9, but time-integrated over the superexponential frontogenetic stage (red shading in Fig. 4). The
contour intervals in (a) and (f) are 2.68 and 5.34 for the approximate GSP in Eq. (30) and BFLUX in Eq. (31),

respectively.

decrease in the horizontal length scale of the wave leads to an
increase in wave PE and a subsequent reduction in the
Lagrangian-mean balanced kinetic energy. Mechanistically, if
the IW phase lines are to remain vertical and steeper than the
isopycnals (Figs. 6¢e,f and supplemental material), then it must,
on average, accumulate PE.

7. Summary and discussion

The present study is focused on the energy exchanges between
a two-dimensional front undergoing strain-induced semigeo-
strophic frontogenesis described by HB72 and hydrostatic, linear
IW vertical modes. The main novelties of the study are

1) the IWs are no longer unbounded in the vertical (e.g.,
Thomas 2012) and have a modal structure that is more
representative of oceanic IWs, and

2) the energy exchanges are quantified in a flow regime of
Ro ~ O(1), and strong horizontal convergent motion,
|8l/f ~ O(1), representative of oceanic submesoscale fronts
and filaments.
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The model is solved numerically for two different strain val-
ues and IW vertical modes 1-3 that are initially oriented par-
allel to isopycnals (case I, minimum frequency NIW) or tilted
against isopycnals (case II, high-frequency IWs, o = 1.5f). For
all of our solutions, we compute the various terms in the wave
KE Eq. (25), distinguishing between the exponential and
superexponential frontogenetic stages.

In agreement with previous work (Thomas 2019), high-
frequency waves can escape the frontal zone and, therefore,
exchange little energy with the ageostrophic frontal circula-
tion. Nevertheless, because the imposed strain is also acting
outside of the frontal zone, the high-frequency wave can still
efficiently extract KE from the balanced deformation flow
through the DSP mechanism.

NIWs also extract KE from the balanced deformation flow
via the deformation shear production (DSP) because the im-
posed strain and baroclinicity modify the wave hodographs to
be rectilinear (Thomas 2012). In contrast with high-frequency
IWs, however, NIW modes remain in the frontal zone and
can exchange KE with the ageostrophic frontal flow because
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FIG. 11. Snapshots of the NIWs streamfunction x [normalized by +/(K(z))H; color shading] with superimposed non-
dimensional buoyancy B [Eq. (38¢); black lines] with a 0.26 contour interval, and ASC nondimensional streamfunc-
tion ¥ [Eq. (38d); blue lines] with a 0.08 contour interval during (a) exponential (r = 2.2T;, Fig. 4b) and (b) superex-
ponential (¢t = 2.7T;) stages of the frontogenesis. The solid and dotted lines show positive and negative values,
respectively. Based on a numerical simulation with « = 0.1f.

their phase lines align with isopycnals and their group velocity
Cg = 0. Indeed, during the exponential stage, most of the KE
extracted due to DSP is transferred to the frontal ageostrophic
secondary circulation (ASC) via the ageostrophic shear produc-
tion (AGSP), because the wave phase lines are titled with the
ageostrophic vertical shear. The inclusion of Ro ~ O(1) and
ageostrophic convergent motions in our model allows us to iden-
tify a new mechanism, the convergence production (CP), through
which NIWs can efficiently exchange KE with the frontal ASC.
The sign of this energy transfer is shown to depend on the sign of
the horizontal divergence of the mean flow. We demonstrate that
CP dominates the energy exchanges in the frontal region during
the superexponential stage when the convergent ASC inside the
frontal zone increases [|8/f ~ O(1)] and leads to a domain

(a)

10

/

1.00 2.00
t/T;
— J5(DISP )dt/|A(Kuer) (1)
== Jo(BELUX )dt /|A(Kner) (1)|
—— Jo{ Residual )dt /|A(Kyer) (t5e)|

— Jy{DSP )dt/|AKer) (1)
— Jp{CP)dt/|AKer) (1)
— Jo{ AGSP )dt/|AKer) (1c)|

averaged positive value despite a weak negative contribution
from divergent flow outside of it. Furthermore, we demonstrate
that during the superexponential stage, the KE loss due to the
AGSP is largely compensated for by a KE gain due to the CP.
This is because as the front sharpens during the superexponential
stage, the ASC streamlines align more closely with isopycnals,
and hence the phase lines of the NIWs. Thus, there is a natural
tendency for the wave momentum flux to align with ASC stream-
lines, which is less effective at fluxing the momentum of the ASC
and at inducing KE transfers between the NIW and the ASC.

a. Oceanic implications

The importance of horizontal divergence to IW energetics
has been previously discussed in Weller (1982), albeit in a

(b)
\ . l/\‘
NN
0.00 1.00 2.00 2.78
t/T;
—— J3(DSP )r di/|A(Kuer) (1) === [ DSP )or dt/|A(Kner (5]
— J3(CP)r dt/|AKue) ()| === 5 CP or di/|AKuer) ()]

Jo( AGSP ) dit /|A(Kier) (1c)|
Jo( BFLUX )i dt /|A(Kner) (15e)|

(
=== Jo{ AGSP )or dt/|A(Kyer) (t5e)
=== Jo{ BFLUX )or dt/|A(Kyer) (t5c)

FIG. 12. (a) The various terms in the IW KE evolution Eq. (23) for numerical simulation with a = 0.1f for a mode-1
high-frequency IW (w = 1.5f; case II). Note that the residual = GSP + LSP. (b) The different energy exchange terms
averaged over the frontal region are defined as the region where (9, B)* > 0.1(693)3[‘“, ¥ = y/A (subscript F; solid
lines) and outside the frontal region (subscript OF; dashed lines). The blue (red) shaded region shows the exponential
(superexponential) frontogenetic stage. Time is normalized by the inertial period 7.
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regime of weak divergent QG flow. Barkan et al. (2021) dem-
onstrated, using realistically forced high-resolution numerical
simulations in the North Atlantic Ocean, that the most sub-
stantial energy transfers from balanced flow to IWs occur at
surface intensified fronts and filaments that are characterized
by Ro ~ O(1) and strong ageostrophic convergent motions.
The results presented here suggest that CP may explain these
observed energy transfers.

To further interpret our results in the context of realistic
ocean models and field measurements we provide analytical
estimates for the most dominant energy exchange terms be-
tween NIWs and the mean flow in our solutions; the DSP, CP,
and AGSP [Eq. (23)]. Using the HB72 scaling for the along-
front and cross front velocity components [Eq. (9)], the hori-
zontal divergence and ageostrophic vertical shear take the
form

8§ = —2aRo, (37a)
v s?

where we emphasize that § = 9,V, Ro = —d,Ulf, and §* = —0,B
are based on the local flow gradients. The NIW wave velocity
magnitudes are determined by the polarization relations for mini-
mum frequency IWs [Eq. (21b)], and the corresponding energy
exchange terms can be written as

DSP = 2a(Ri;' — Ro)¥K, (38a)
CP = 4aRovK, (38b)
AGSP = —4aRi; 'YK, (38¢)

where y= (1/21%)/K = 1/(2 + Ro — Rigl) denotes the fraction
of wave KE associated with the cross-front wave velocity v. For
NIWs in a cyclonic and convergent frontal zone Ro > 0, Ri\;1 >0
and (Rig1 — Ro) >0, and so DSP, CP > 0 and AGSP < 0. In-
deed, the above analytical predictions match well the com-
puted energy exchanges in the frontal region (thick solid lines
in Fig. 8).

Evidently, Egs. (38a)—(38c) only hold exactly in our idealized
frontogenesis model and should be viewed as scaling estimates
for more realistic model solutions or in situ measurements. Im-
portantly, they illustrate the dependency of the energy exchanges
on the IW kinetic energy content and the mean-flow parameters
Ro and Ri,. For example, the condition for the frequency of a
NIW in a cyclonic frontal region to be real [Eq. (21a)] is
(Rig] — Ro) < 1. Using this condition in Eq. (38a) results in the
upper bound DSP < 2ayK, which demonstrates that the energy
extraction by the NIW due to DSP depends on the “mesoscale”
strain rate « and the eccentricity of the wave hodographs (i.e., y).
On the contrary, CP and AGSP depend directly on Ro and
Ri;l, which are expected to grow as the front sharpens. Like
DSP, AGSP also depends on the wave orientation because the
efficiency of this energy exchange mechanism crucially depends
on the cross-front wave velocity aligning with the ageostrophic
frontal shear. In a three-dimensional frontal zone, Srinivasan et al.
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(2022) demonstrated that the CP mechanism should take the
general from

CP = —68K, (39)
where the current divergence is 6 = 9, U + 4, V, and K is the
KE of the IWs. This coordinate-invariant form of CP illus-
trates that the theoretical prediction in Eq. (38b) should gen-
eralize to

CP ~ aROK, (40)
and that the magnitude and direction of the exchange should
only depend on the magnitude and sign of Ro (and the wave
kinetic energy) and not on the wave orientation relative to
the front.

It was shown in Barkan et al. (2019) that the dynamical
dominance of the convergent ASC in submesoscale fronts
and filaments observed and modeled in the northern Gulf
of Mexico is independent of the physical mechanism that
initiated frontogenesis (e.g., mesoscale strain or turbulent
thermal wind; Gula et al. 2014). This means that, in con-
trast with the DSP, CP can lead to energy extraction from oce-
anic fronts even in the absence of mesoscale straining motions.
Furthermore, it was demonstrated that the frontal convergence
rate —8/f ~ Ro (see also D’Asaro et al. 2018), which is substan-
tially stronger than predicted by the HB72 model used here.
This means that, in effect, CP can be O(f/a) larger than in
Eq. (40).

For the high-frequency IW, we show in appendix C that the
theoretical estimates for the dominant energy exchange terms
take the form

DSP = o(v? — u?), (41a)

BFLUX = —av? (41b)
In this case, the eccentricity of the wave hodographs is
solely a result of the imposed strain because the high-
frequency wave escapes the frontal zone and does not feel
the baroclinicity of the flow. As time progresses the wave
hodographs become more rectilinear (Jv| > |u), DSP ~ av?
and BFLUX ~ —DSP, as is shown in Fig. 12b (dashed blue
and brown lines).

b. Final remarks

The idealized 2D model used here ignores a variety of oce-
anic processes that can interfere and/or coexist with the en-
ergy exchange mechanisms we discuss. The rapid increase in
the horizontal convergence of the ASC during the superexpo-
nential stage is arrested in reality by frontal instabilities like
symmetric instability (Thomas and Lee 2005; Yu et al. 2019),
that are excited at O(100) m scales (Dong et al. 2021), or by
boundary layer turbulence (Munk et al. 2000). Furthermore,
IWs can radiate downward into the ocean interior (Thomas
2019) or transfer their energy to higher-frequency waves (higher
modes) via nonlinear wave-wave interactions (McComas and
Bretherton 1977). A more complete investigation of the KE
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exchange mechanisms in realistic ocean simulations is left for a
future study.
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APPENDIX A

Derivation of the HB72 Model

The governing equations of the mean-flow evolution are
given by

DU
—_— - + = Al
D fV +aU=0, (Ala)
DV opP
— +fU - aV = — Alb
oy TV« iy’ (Alb)
0= or + B, (Alc)
[F4
DB
— =0 Ald
T (Ald)
aV 9
—+ —W =0, (Ale)
Jdy 0z
where the material derivative is defined as
D
9 d 9 (A2)

2l i vl wl
Do Vgt W

Using generalized momentum coordinates defined in Egs. (5),
Egs. (Ala) and (A1b) can be combined into

22U

a7z T (=AU =FU, (A3)

where the vertical advection terms are discarded because
their contributions appear at O[(c/f)?] which is negligible
since in the HB72 model a << 1, except when the finite-
time singularity is reached (Shakespeare and Taylor 2013).
The materially conserved PV [Eq. (4)] in the generalized
momentum coordinate system [Egs. (5a)-(5c)] takes the

form
D q
— = O’ (A4a)

-1
WY, 2, 7) :f‘E(l + L aU) :

ZtFe oy (Adb)

where the generalized material derivative is defined as
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D d ad

=t W—.

DT oT WaZ (A3)
We pick an initial uniform PV distribution ¢(Y, Z, T = 0) =
go = fN?, and Eq. (A4b) become

at

9B ( +]1Ce W)= (A6)

fa?_qo

The buoyancy equation at the top and bottom boundaries
is given by

(AT)

and the assumption of a localized front gives AB(Y — oo,
Z, T) = 0. Using this condition, Eq. (A7) yields AB(Y, Z = 0,
T) = AB(Y, Z = —H, T) = 0. Substituting Eq. (6) into the
PV conservation Eq. (A6), and applying the boundary condi-
tion AB = 0 at Z = —H yields

N2 Z 9U
AB(Y, Z, T) = —e"

7 (A8)

Thus the total buoyancy field B can be expressed as

2 Nz ol ’ au ’
B(Y, Z, T) = N°Z + By(Y) + ~e 2dz'.  (A9)
f - dY

Combining Egs. (Ald) and (A9) we obtain an expression
for the vertical velocity W

J _orf? a( TBU)
=" e ol e —Z)az’ Al
w fe LHaTe aYd’ (A10a)
J:efxT1+1e‘*T‘9—U_1 (A10b)
fo oy

It is convenient to introduce an ageostrophic secondary cir-
culation (ASC) streamfunction ¥(Y, Z, T) as

v = —Jy witdy =L eear & (A11)
). - aT ’

f

Z
e“TJ dz'u
H

where for evaluating the Y integral of the above equation
we assume that U(Y — =, Z, T) = 0. From the thermal
wind relation in Eq. (3) we obtain

1

aB
= — ol P
U, fe v dZ. (A12)
Because the buoyancy anomaly AB [Eq. (A8)] and the
vertical velocity W [Egs. (A10a,b)] involve the vertical in-
tegral of alongfront velocity U, it is convenient to define a
variable

A
&Y, Z,T) = J u(y, 7', Tz, (A13)
—-H
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such that

U(Y, Z.T) = (%cp(y, Z.7) (A14)

2
J
B(Y,Z,T) = N°Z + B,(Y) + NTe“T a—ycb(y, Z, 1),

(A15)

1 a
WY, Z,T) = f(a + ﬁ)qmc z, 7). (A16)

With the above definition of U and using Egs. (A9) and
(A12), Eq. (A3) becomes

& 2 2)32 2 sar &
S P+ N2
( U PV oy

dB
® = —fe"‘Td—YO, (A17)

subject to boundary conditions ®(Y — *w, Z, T) = 0 and
DY, Z=-HT)=®Y,Z=0,T) =0 to enforce rigid
lid conditions. One of the key assumptions in semigeo-
strophic theory is D*/DT* << f2, i.e., that the Lagrangian
time scale of the flow is much larger than the inertial
period (Hoskins 1975), and together with the weak
strain limit @ << f, the above equation can be further
simplified to

Equation (A18) describes the evolution of semigeostrophic
frontogenesis. The solution of ® can be written as the sum
of vertical sine modes,

O(Y, Z, T) = X sin(m, Z)| & m, T dl, (A19)
n=1 — o0

where [ and m, = nw/H are the horizontal and vertical wave-
numbers, respectively, and a “hat” denotes the Fourier mode
amplitude. Substituting Eq. (A19) into Eq. (8) we obtain

. ifle*”B_ A
b = 7¢’ A20
2 + N2e2TP/m2 (420)
with
2 n
A, = —[-1+ (=1)"]. (A21)
nwm

Once the solution of ®(Y, Z, T) is known, the other solutions
of alongfront velocity U(Y, Z, T), buoyancy field B(Y, Z, T)
and ASC streamfunction W(Y, Z, T) are obtained by using
Egs. (A14)-(A16), respectively.

APPENDIX B

Dimensional Quantities Used in the Numerical

Simulations
fz ﬁ + N2e2eT i b= — feaT dBO_ (A18) The dimensional values of the simulation parameters are
472 aY? dy summarized in Table B1.
TABLE B1. Description and values of the simulation parameters.

Parameter Definition Value
L Domain size in y direction 1000 km
H Domain size in z direction 1 km
A Cross-front length scale 200 km
ny Number of uniform grid points in y direction 3500
n, Number of uniform grid points in z direction 240
K74 Initial amplitude of the localized front —0.06 m s ™2
N Buoyancy frequency 107257t
f Coriolis frequency 107457t
v Viscosity 2x 1074 m?s!
K Diffusivity 2X 1074 m?s™?
vy Hyperviscosity 5x 10" m*s™!
K Hyperdiffusivity 5%x10"m*s™!
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APPENDIX C >
olt) = fA[1 + [@] . (C3)

Analytical Estimates for Energy Exchanges with fm

High-Frequency IWs
Plugging the solutions (C2a), (C2b) to the definition of
We provide here analytical estimates for the dominant energy  DSP in Eq. (23) leads to

exchange terms between the mean flow and high-frequency

IWs, the DSP and BFLUX (Fig. 12). As shown in Fig. 6, the DSP = a(véez"" - ugeﬂat), (C4)
high-frequency IW escapes the frontal region after about one

inertial period. Consequently, the energy exchanges occur out-  which further simplifies to

side of the frontal zone where $%, Ro — 0. Equations (10a),

(10b), (10d), therefore, simplify to DSP = DSP, + 4d’tK,, (C5a)
u u
— —ay— =—au + fv, (Cla) ‘
o 9y J DSP dt ~ (DSP,, (CSb)
v v f (Clb) 0
— —ay— = av — fu,
o 4 in the limit o << 1. Above, DSP,= (v} —u3) and
ob _ ab N =0 1 K, = 1/2(v} + u}). Equation (C5b) shows that the integrated
o Yoy =50 (Cle) " DSP) should increase lincarly with time (thick blue line in
Fig. C1).The solution of w can be obtained from continuity
with solutions of the form Eq. (10e), and is given by
u(y. 2. 1) = uy(e)e OO (C2a) Wy, 2, 1) = —iliwy ()Mol (o)
- at ,ill(0)y—o(0)]
v, 2, 1) = yy(2)ee ’ (C2b) where vy = m,wy. From Eq. (C2c)
b(y, z, 1) = by(z)e el (C2¢) N (o + i) L N2(a + i)
by(z) =il " wy(z) ~ il — wy(2),  (CT)

where u(z), vo(z) and by(z) denote the initial modal struc-

ture of u, v and b, respectively. In this case, the imposed pecause w > a. Finally, the BFLUX takes the form
strain, «, acts to exponentially increase the horizontal wave-

number like i(f) = lpe®, where I, = I(t = 0) (Craik 1989; N,
BFLUX ~ —a——wj. 8
Thomas 2012). The corresponding IW frequency is v *z " (©8)
10
{0 e
0 fmmemee T
—54 TN
-10 . :
0.00 1.00 2.00 2.78
t/T;
- f(;( DSP )oF dt /|A(Kper) (15e) | f(; (DSPg ‘f’4052”<0>0Fdt/|A<Knel>(f.\'e)‘
- [0’( BFLUX )oF dt/|A(Kper) (tse)| j(; <7atV%>Oth/|A<le>(t.v)‘

FIG. C1. As in Fig. 12b, but only the DSP and BFLUX terms are shown. Thick lines denote
the theoretical estimates [Egs. (C5a) and (C9b)] beginning at ¢ = 1.257; when the high frequency
has largely escaped the frontal zone.
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For a high-frequency IW (o > f) the dispersion relation
simplifies to w =~ Ni/m,, and Eq. (C8) becomes
BFLUX ~ —am’w} = —av},

n

(C9a)

23
J BFLUX dt ~ —atv?.
0

(C9b)

The above equations show that the BFLUX is a negative quan-
tity that converts wave KE to wave PE. As time progresses,
the imposed strain makes wave hodograph more rectilinear
(ie., [v] = |u]), leading to DSP ~ av* and to the asymptotic
limit BFLUX — —DSP (thick brown line in Fig. C1).
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